【題目】【2017屆陜西省西安市鐵一中學(xué)高三上學(xué)期第五次模擬考試數(shù)學(xué)(文)】已知向量,,且函數(shù).
(Ⅰ)當(dāng)函數(shù)在上的最大值為3時(shí),求的值;
(Ⅱ)在(Ⅰ)的條件下,若對(duì)任意的,函數(shù),的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)在上的單調(diào)遞減區(qū)間.
【答案】(Ⅰ);(Ⅱ).
【解析】試題分析:(1)把向量的坐標(biāo)代入,由兩角和的正弦公式對(duì)解析式整理,再由題設(shè)條件,時(shí),最后對(duì)分類討論,求出對(duì)應(yīng)的最大值。
(2)把的值代入求出函數(shù)的周期,再由條件和正弦函數(shù)的圖象求出的值,再由正弦函數(shù)的單調(diào)區(qū)間和整體思想求出增區(qū)間,再結(jié)合的范圍求出遞增區(qū)間即可。
試題解析:(Ⅰ)由已知得,
時(shí),
當(dāng)時(shí),的最大值為,所以;
當(dāng)時(shí),的最大值為,故(舍去)
綜上:函數(shù)在上的最大值為3時(shí),
(Ⅱ)當(dāng)時(shí),,
由的最小正周期為可知,的值為.
又由,可得,
,
∵,
∴函數(shù)在上的單調(diào)遞減區(qū)間為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺(tái)稱為芻童.在如圖所示的塹堵與芻童的組合體中,.臺(tái)體體積公式:,其中分別為臺(tái)體上、下底面面積,為臺(tái)體高.
(Ⅰ)證明:直線 平面;
(Ⅱ)若,,,三棱錐的體積,求該組合體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司擬投資100萬元,有兩種投資方案可供選擇:一種是年利率為10%,按單利計(jì)算,5年后收回本金和利息;另一種是年利率為9%,按每年復(fù)利一次計(jì)算,5年后收回本金和利息.哪一種投資更有利?這種投資比另一種投資5年可多得利息多少元?(結(jié)果精確到0.01萬元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線經(jīng)過點(diǎn)
(1)討論函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(λx+1)ln x-x+1.
(1)若λ=0,求f(x)的最大值;
(2)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直,證明:>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有4位同學(xué)在同一天的上午、下午參加“身高與體重”、“立定跳遠(yuǎn)”、“肺活量”、“握力”、“臺(tái)階”五個(gè)項(xiàng)目的測(cè)試,每位同學(xué)測(cè)試兩個(gè)項(xiàng)目,分別在上午和下午,且每人上午和下午測(cè)試的項(xiàng)目不能相同.若上午不測(cè)“握力”,下午不測(cè)“臺(tái)階”,其余項(xiàng)目上午、下午都各測(cè)試一人,則不同的安排方式的種數(shù)為( )
A. 264 B. 72 C. 266 D. 274
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lg(ax-bx),(a>1>b>0).
(1)求f(x)的定義域;
(2)若f(x)在(1,+∞)上遞增且恒取正值,求a,b滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)有兩個(gè)極值點(diǎn)(記為和)時(shí),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)要建造一座八邊形的休閑小區(qū),它的主體造型的平面圖是由兩個(gè)相同的矩形ABCD和EFGH構(gòu)成的,是面積為200平方米的十字形地帶.計(jì)劃在正方MNPQ上建一座花壇,造價(jià)是每平方米4 200元,在四個(gè)相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價(jià)是每平方米210元,再在四個(gè)空角上鋪上草坪,造價(jià)是每平方米80元.
(1)設(shè)總造價(jià)是S元,AD長(zhǎng)為x米,試建立S關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)x為何值時(shí),S最?并求出最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com