設(shè)兩個(gè)平面α、β,直線(xiàn)l,下列三個(gè)條件:①l⊥α;②l∥β;③α⊥β.若以其中兩個(gè)作為前提,另一個(gè)作為結(jié)論,則可構(gòu)成三個(gè)命題,這三個(gè)命題中正確的個(gè)數(shù)為(  )
A、3B、2C、1D、0
分析:列出①②?③;①③?②;②③?①;判斷三者的正誤即可得到選項(xiàng).
解答:解:①②?③即:
l⊥α
l∥β
?α⊥β
,正確;
①③?②即:
l⊥α
α∥β
推出l∥β
,不正確,
②③?①即:
l∥β
α⊥β
推出l⊥α
,不正確;
故選C
點(diǎn)評(píng):本題是基礎(chǔ)題,考查直線(xiàn)與平面的垂直,平面與平面的平行,是?碱}型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,ABCD和ABEF都是邊長(zhǎng)為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON∥平面CBE.
精英家教網(wǎng)
(1)求角MON大小;
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年山東省濟(jì)南市高三12月質(zhì)量檢測(cè)數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分12分)如圖,AB為圓O的直

徑,點(diǎn)E、F在圓O上,AB∥EF,矩形ABCD

所在的平面和圓O所在的平面垂直,且.

⑴求證:;

⑵設(shè)FC的中點(diǎn)為M,求證:

⑶設(shè)平面CBF將幾何體分成的兩個(gè)錐體的體積分別為,求的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,ABCD和ABEF都是邊長(zhǎng)為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON∥平面CBE.

(1)求角MON大。
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)如圖a所示,某地為了開(kāi)發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)P和居民區(qū)O的公路,點(diǎn)P所在的山坡面與山腳所在水平面α所成的二面角為θ(0°<θ<90°),且sinθ=,點(diǎn)P到平面α的距離PH=0.4(km).沿山腳原有一段筆直的公路AB可供利用.從點(diǎn)O到山腳修路的造價(jià)為a萬(wàn)元/km,原有公路改建費(fèi)用為萬(wàn)元/km.當(dāng)山坡上公路長(zhǎng)度為l km(1≤l≤2)時(shí),其造價(jià)為(l2+1)a萬(wàn)元已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=(km).

(1)在AB上求一點(diǎn)D,使沿折線(xiàn)PDAO修建公路的總造價(jià)最小;

(2)對(duì)于(1)中得到的點(diǎn)D,在DA上求一點(diǎn)E,使沿折線(xiàn)PDEO修建公路的總造價(jià)最小;

(3)在AB上是否存在兩個(gè)不同的點(diǎn)D′,E′,使沿折線(xiàn).PD′E′O修建公路的總造價(jià)小于(2)中得到的最小總造價(jià)?證明你的結(jié)論.

a)

第19題圖

(文)如圖b所示,直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,△ABC為等邊三角形,且AA1=AD=DC=2.

(1)求AC1與BC所成角的余弦值;

(2)求二面角C1-BD-C的大;

(3)設(shè)M是BD上的點(diǎn),當(dāng)DM為何值時(shí),D1M⊥平面A1C1D?并證明你的結(jié)論.

第19題圖

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省金華市義烏二中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,ABCD和ABEF都是邊長(zhǎng)為1的正方形,AM=FN,現(xiàn)將兩個(gè)正方形沿AB折成一個(gè)直二面角,O∈AB,平面MON∥平面CBE.

(1)求角MON大;
(2)設(shè)AO=x,當(dāng)x為何值時(shí),三棱錐A-MON的體積V最大?并求出最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案