函數(shù)y=(
1
2
x2-2x+3的單調(diào)遞增區(qū)間為(  )
A、(-1,1)
B、[1,+∞)
C、(-∞,1]
D、(-∞,+∞)
考點:復合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應用
分析:設(shè)t=x2-2x+3,根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系即可得到結(jié)論.
解答: 解:設(shè)t=x2-2x+3,則函數(shù)y=(
1
2
t為減函數(shù),
根據(jù)復合函數(shù)單調(diào)性之間的關(guān)系知要求函數(shù)f(x)的單調(diào)遞增區(qū)間,
即求函數(shù)t=x2-2x+3的遞減區(qū)間,
∵t=x2-2x+3,遞減區(qū)間為(-∞,1],
則函數(shù)f(x)的遞增區(qū)間為(-∞,-1],
故選:C
點評:本題主要考查函數(shù)單調(diào)區(qū)間的求解,利用換元法結(jié)合復合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,Sn為其前n項和,若
S4
S6
=-
2
3
,則
S5
S8
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(-4,-3),則sinα的值為( 。
A、-
3
5
B、-
4
5
C、
3
5
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

2sin(-210°)的值為( 。
A、-
1
2
B、1
C、
1
2
D、0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

①(
4
3
-1+(4 -
3
4
2+(
8
)-
4
3
-16-0.75
②lg25+lg2lg50+
5
×2 
1
2
log25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)復數(shù)z1=1-i,z2=2+i,其中i為虛數(shù)單位,則z1•z2的虛部為( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若全集U={1,2,3,4,5,6},M={1,4},N={2,3},則集合(∁UM)∩N等于(  )
A、{2,3}
B、{2,3,5,6}
C、{1,4}
D、{1,4,5,6}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,曲線Γ由曲線C1
x2
a2
+
y2
b2
=1(a>b>0,y≤0)
和曲線C2
x2
a2
-
y2
b2
=1(y>0)
組成,其中點F1,F(xiàn)2為曲線C1所在圓錐曲線的焦點,點F3,F(xiàn)4為曲線C2所在圓錐曲線的焦點,
(1)若F2(2,0),F(xiàn)3(-6,0),求曲線Γ的方程;
(2)如圖,作直線l平行于曲線C2的漸近線,交曲線C1于點A、B,求證:弦AB的中點M必在曲線C2的另一條漸近線上;
(3)對于(1)中的曲線Γ,若直線l1過點F4交曲線C1于點C、D,求△CDF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

|z+
1
z
|=1時,則|z|的取值范圍是
 

查看答案和解析>>

同步練習冊答案