A. | ($\frac{π}{3}$,$\frac{2π}{3}$) | B. | ($\frac{π}{6}$,$\frac{5π}{6}$) | C. | (0,$\frac{π}{3}$),($\frac{2π}{3}$,π) | D. | (0,$\frac{π}{6}$),($\frac{5π}{6}$,π) |
分析 利用導函數(shù)研究其單調(diào)性可得結(jié)論.
解答 解:函數(shù)f(x)=$\sqrt{3}$x+2cosx,x∈(0,π)
則f′(x)=$\sqrt{3}$-2sinx,
令f′(x)=0.
可得x=$\frac{π}{3}$或$\frac{2π}{3}$,
當x∈($\frac{π}{3}$,$\frac{2π}{3}$)時,f′(x)<0,∴函數(shù)f(x)在x∈($\frac{π}{3}$,$\frac{2π}{3}$)是單調(diào)遞減.
∴函數(shù)f(x)=$\sqrt{3}$x+2cosx,x∈(0,π)上單調(diào)減區(qū)間為($\frac{π}{3}$,$\frac{2π}{3}$),
故選A.
點評 本題考察了利用導函數(shù)研究函數(shù)單調(diào)性問題.屬于基礎(chǔ)題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | B. | f(x)=2x-1,g(x)=2x+1 | ||
C. | f(x)=x2,g(x)=$\root{3}{{x}^{6}}$ | D. | f(x)=1,g(x)=x0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com