設(shè)函數(shù)數(shù)f(x)=2x+數(shù)學(xué)公式-1(x<0),則f(x)


  1. A.
    有最大值
  2. B.
    有最小值
  3. C.
    是增函數(shù)
  4. D.
    是減函數(shù)
A
分析:利用基本不等式求最值時,一定要注意滿足的條件,不是正數(shù)提出負號后再用基本不等式.
解答:∵x<0,∴
當且僅當即x=取等號
故選項為A.
點評:利用基本不等式求最值,注意“一正”“二定”“三相等”要同時滿足.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-e-x
(Ⅰ)證明:f(x)的導(dǎo)數(shù)f′(x)≥2;
(Ⅱ)若對所有x≥0都有f(x)≥ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)為區(qū)間(0,1]上的圖象是連續(xù)不斷的一條曲線,且恒有0≤f(x)≤1,可以用隨機模擬方法計算由曲線y=f(x)及直線x=0,x=1,y=0所圍成部分的面積S,先產(chǎn)生兩組(每組N個),區(qū)間(0,1]上的均勻隨機數(shù)x1,x2,…,xn和y1,y2,…,yn,由此得到V個點(x,y)(i-1,2…,N).再數(shù)出其中滿足y1≤f(x)(i=1,2…,N)的點數(shù)N1,那么由隨機模擬方法可得S的近似值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ex-e-x
(1)證明:f(x)的導(dǎo)數(shù)f′(x)≥2;
(2)若對所有x≥0都有 f(x2-1)<e-e-1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在區(qū)間D上的導(dǎo)數(shù)為f'(x),f'(x)在區(qū)間D上的導(dǎo)數(shù)為g(x),若在區(qū)間D上,g(x)<0恒成立,則稱函數(shù)y=f(x)在區(qū)間D上為“凸函數(shù)”已知實數(shù)m是常數(shù),f(x)=
x4
12
-
mx3
6
-
3x2
2

(1)若y=f(x)在區(qū)間[0,3]上為“凸函數(shù)”,求m的取值范圍;
(2)若對滿足|m|≤2的任何一個實數(shù)m,函數(shù)f(x)在區(qū)間(a,b)上都為“凸函數(shù)”,求b-a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:設(shè)函數(shù)y=f(x)在(a,b)內(nèi)可導(dǎo),f'(x)為f(x)的導(dǎo)數(shù),f''(x)為f'(x)的導(dǎo)數(shù)即f(x)的二階導(dǎo)數(shù),若函數(shù)y=f(x) 在(a,b)內(nèi)的二階導(dǎo)數(shù)恒大于等于0,則稱函數(shù)y=f(x)是(a,b)內(nèi)的下凸函數(shù)(有時亦稱為凹函數(shù)).已知函數(shù)f(x)=xlnx
(1)證明函數(shù)f(x)=xlnx是定義域內(nèi)的下凸函數(shù),并在所給直角坐標系中畫出函數(shù)f(x)=xlnx的圖象;
(2)對?x1,x2∈R+,根據(jù)所畫下凸函數(shù)f(x)=xlnx圖象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]與x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小關(guān)系;
(3)當n為正整數(shù)時,定義函數(shù)N (n)表示n的最大奇因數(shù).如N (3)=3,N (10)=5,….記S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,證明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>

同步練習冊答案