如圖,某地為了開發(fā)旅游資源,欲修建一條連接風(fēng)景點(diǎn)和居民區(qū)的公路,點(diǎn)所在的山坡面與山腳所在水平面所成的二面角為(),且,點(diǎn)到平面的距離(km).沿山腳原有一段筆直的公路可供利用.從點(diǎn)到山腳修路的造價(jià)為萬元/km,原有公路改建費(fèi)用為萬元/km.當(dāng)山坡上公路長(zhǎng)度為km()時(shí),其造價(jià)為萬元.已知,,,.
(I)在上求一點(diǎn),使沿折線修建公路的總造價(jià)最小;
(II) 對(duì)于(I)中得到的點(diǎn),在上求一點(diǎn),使沿折線修建公路的總造價(jià)最小.
(III)在上是否存在兩個(gè)不同的點(diǎn),,使沿折線修建公路的總造價(jià)小于(II)中得到的最小總造價(jià),證明你的結(jié)論.
解:(I)如圖,,,,
由三垂線定理逆定理知,,所以是
山坡與所成二面角的平面角,則,
.
設(shè),.則
.
記總造價(jià)為萬元,
據(jù)題設(shè)有
當(dāng),即時(shí),總造價(jià)最。
(II)設(shè),,總造價(jià)為萬元,根據(jù)題設(shè)有
.
則,由,得.
當(dāng)時(shí),,在內(nèi)是減函數(shù);
當(dāng)時(shí),,在內(nèi)是增函數(shù).
故當(dāng),即(km)時(shí)總造價(jià)最小,且最小總造價(jià)為萬元.
(III)解法一:不存在這樣的點(diǎn),.
事實(shí)上,在上任取不同的兩點(diǎn),.為使總造價(jià)最小,顯然不能位于 與之間.故可設(shè)位于與之間,且=,,,總造價(jià)為萬元,則.類似于(I)、(II)討論知,,,當(dāng)且僅當(dāng),同時(shí)成立時(shí),上述兩個(gè)不等式等號(hào)同時(shí)成立,此時(shí),,取得最小值,點(diǎn)分別與點(diǎn)重合,所以不存在這樣的點(diǎn) ,使沿折線修建公路的總造價(jià)小于(II)中得到的最小總造價(jià).
解法二:同解法一得
.
當(dāng)且僅當(dāng)且,即同時(shí)成立時(shí),取得最小值,以上同解法一.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
5 |
a |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖南省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2007年湖南省高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com