已知函數(shù)f(x)=ln x.

(1)若a>0,試判斷f(x)在定義域內(nèi)的單調(diào)性;

(2)若f(x)在[1,e]上的最小值為,求a的值;

(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范圍.

 

【答案】

(1)f(x)在(0,+∞)上是單調(diào)遞增函數(shù)

(2)a=-.

(3)a≥-1時,f(x)<x2在(1,+∞)上恒成立

【解析】

試題分析:解 (1)由題意f(x)的定義域為(0,+∞),且f′(x)=.因為a>0,所以f′(x)>0,故f(x)在(0,+∞)上是單調(diào)遞增函數(shù).  3分

(2)由(1)可知,f′(x)=.

①若a≥-1,則xa≥0,即f′(x)≥0在[1,e]上恒成立,此時f(x)在[1,e]上為增函數(shù),

所以f(x)minf(1)=-a,所以a=- (舍去).  5分

②若a≤-e,則xa≤0,即f′(x)≤0在[1,e]上恒成立,此時f(x)在[1,e]上為減函數(shù),

所以f(x)minf(e)=1-?a=- (舍去).   7分

③若-e<a<-1,令f′(x)=0得x=-a,當1<x<-a時,f′(x)<0,所以f(x)在[1,-a]上為減函數(shù);當-a<x<e時,f′(x)>0,所以f(x)在[-a,e]上為增函數(shù),所以f(x)minf(-a)=ln(-a)+1=?a=-

綜上所述,a=-.     9分

(3)因為f(x)<x2,所以ln x<x2.又x>0,所以a>xln xx3.

g(x)=xln xx3,

h(x)=g′(x)=1+ln x-3x2h′(x)=-6x.   11分

因為x∈(1,+∞)時,h′(x)<0,h(x)在(1,+∞)上是減函數(shù).

所以h(x)<h(1)=-2<0,即g′(x)<0,

所以g(x)在[1,+∞)上也是減函數(shù),則g(x)<g(1)=-1,

所以a≥-1時,f(x)<x2在(1,+∞)上恒成立.  13分

考點:導數(shù)的運用

點評:主要是考查了導數(shù)在研究函數(shù)中的運用,屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當a≥時,函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.

(3)當x≥0時,g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省高二下期第一次月考理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點的直線方程;

(2)求使直線l和y=f(x)相切且切點異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當x=時,y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學導數(shù)專項訓練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習冊答案