如圖所示,PA為0的切線,A為切點,PBC是過點O的割線,PA ="10,PB" =5、

(I)求證:;
(2)求AC的值.
(I) 先證,進而證明 (II) AC=

試題分析:(Ⅰ)∵為⊙的切線,∴,
.∴.                          ……4分
(Ⅱ)∵為⊙的切線,是過點的割線,∴

又∵,,∴,                             ……7分
由(Ⅰ)知,,∵是⊙的直徑,
.∴,
∴AC=                                                          ……10分
點評:本題主要考查與圓有關的比例線段、相似三角形的判定及切線性質(zhì)的應用.解決本題第一問的關鍵在于先由切線得到
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖, 已知圓O的半徑為3, AB與圓D相切于A, BO與圓O相交于C, BC ="2," 則△ABC的面積為               .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

,點M在AB上且,點N在AC上,聯(lián)結(jié)MN,使△AMN與原三角形相似,則AN=___________

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(幾何證明選講選做題)如圖,PAB、PCD為⊙O的兩條割線,若PA=5,AB=7,CD=11,AC=2,則BD等于          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知,如圖,在平行四邊形ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.

(1)求證:△AEM ≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明講 如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點E,EF垂直BA的延長線于點F.

求證:(1)
(2)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)選修4-1:幾何證明選講
如圖,AB,CD四點在同一圓上,的延長線交于點,點的延長線上.

(Ⅰ)若,求的值;
(Ⅱ)若,證明:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,點是圓上的點,且,則圓的面積等于      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如右圖:已知AC=BD,過C點的圓的切線與BA的延長線E點,若=
=       .
 

查看答案和解析>>

同步練習冊答案