分析 (Ⅰ)由$2{S_n}=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$…①當(dāng)n≥2時,$2{S_{n-1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$…②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
可得數(shù)列$\left\{{\frac{a_n}{n}}\right\}$從第二項起是公差為1的等差數(shù)列,即可求數(shù)列通項.
(Ⅱ)當(dāng)n≥3時,∵n2>(n-1)•(n+1),∴$\frac{1}{n^2}<\frac{1}{{({n-1})•({n+1})}}$
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…\frac{1}{{a}_{n}}$<$1+\frac{1}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{2}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{2}({\frac{1}{n-2}-\frac{1}{n}})+\frac{1}{2}({\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}+\frac{1}{3}-\frac{1}{n}-\frac{1}{n+1}})=\frac{5}{3}+\frac{1}{2}({-\frac{1}{n}-\frac{1}{n+1}})<\frac{5}{3}$即可.
解答 解:(Ⅰ)由$2{S_n}=n{a_{n+1}}-\frac{{n({n+1})({n+2})}}{3}$…①
當(dāng)n≥2時,$2{S_{n-1}}=({n-1}){a_n}-\frac{{({n-1})n({n+1})}}{3}$…②
由①-②,得 2Sn-2Sn-1=nan+1-(n-1)an-n(n+1),
∵2an=2Sn-2Sn-1∴2an=nan+1-(n-1)an-n(n+1)∴$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,
∴數(shù)列$\left\{{\frac{a_n}{n}}\right\}$從第二項起是公差為1的等差數(shù)列.
∴當(dāng)n=1時,$2{a_1}=2{S_1}={a_2}-\frac{1}{3}-1-\frac{2}{3}={a_2}-2$,
又a1=1,∴a2=4
∴$\frac{a_n}{n}=2+1×({n-2})=n$,∴${a_n}={n^2}({n≥2})$當(dāng)n=1時,上式顯然成立.∴${a_n}={n^2},n∈{N^*}$
(Ⅱ)證明:由(2)知,${a_n}={n^2},n∈{N^*}$①當(dāng)n=1時,$\frac{1}{a_1}=1<\frac{5}{3}$,∴原不等式成立.②當(dāng)n=2時,$\frac{1}{a_1}+\frac{1}{a_2}=1+\frac{1}{4}<\frac{5}{3}$,∴原不等式亦成立.
③當(dāng)n≥3時,∵n2>(n-1)•(n+1),∴$\frac{1}{n^2}<\frac{1}{{({n-1})•({n+1})}}$
$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…\frac{1}{{a}_{n}}$<$1+\frac{1}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}})+\frac{1}{2}({\frac{1}{3}-\frac{1}{5}})+…+\frac{1}{2}({\frac{1}{n-2}-\frac{1}{n}})+\frac{1}{2}({\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-2}-\frac{1}{n}+\frac{1}{n-1}-\frac{1}{n+1}})$
=$\frac{5}{4}+\frac{1}{2}({\frac{1}{2}+\frac{1}{3}-\frac{1}{n}-\frac{1}{n+1}})=\frac{5}{3}+\frac{1}{2}({-\frac{1}{n}-\frac{1}{n+1}})<\frac{5}{3}$
∴當(dāng)n≥3時,∴原不等式亦成立.綜上,對一切正整數(shù)n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{5}{3}$.
點評 本題考查了數(shù)列遞推式、通項公式,考查了數(shù)列求和及放縮法,屬于中檔題.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com