A. | (-∞,0) | B. | (0,$\frac{3}{2e}$] | C. | [$\frac{3}{2e}$,+∞) | D. | (-∞,0)∪[$\frac{3}{2e}$,+∞) |
分析 根據(jù)函數(shù)與方程的關(guān)系將方程進行轉(zhuǎn)化,利用換元法轉(zhuǎn)化為方程有解,構(gòu)造函數(shù)求函數(shù)的導(dǎo)數(shù),利用函數(shù)極值和單調(diào)性的關(guān)系進行求解即可.
解答 解:由3m+a(2n-4em)(lnn-lnm)=0,
得3m+2a(n-2em)ln$\frac{n}{m}$=0,
即3+2a($\frac{n}{m}$-2e)ln$\frac{n}{m}$=0,
即設(shè)t=$\frac{n}{m}$,則t>0,
則條件等價為3+2a(t-2e)lnt=0,
即(t-2e)lnt=-$\frac{3}{2a}$有解,
設(shè)g(t)=(t-2e)lnt,
g′(t)=lnt+1-$\frac{2e}{t}$為增函數(shù),
∵g′(e)=lne+1-$\frac{2e}{e}$=1+1-2=0,
∴當(dāng)t>e時,g′(t)>0,
當(dāng)0<t<e時,g′(t)<0,
即當(dāng)t=e時,函數(shù)g(t)取得極小值為:g(e)=(e-2e)lne=-e,
即g(t)≥g(e)=-e,
若(t-2e)lnt=-$\frac{3}{2a}$有解,
則-$\frac{3}{2a}$≥-e,即$\frac{3}{2a}$≤e,
則a<0或a≥$\frac{3}{2e}$,
故實數(shù)a的取值范圍是(-∞,0)∪[$\frac{3}{2e}$,+∞).
故選:D.
點評 本題主要考查不等式恒成立問題,根據(jù)函數(shù)與方程的關(guān)系,轉(zhuǎn)化為兩個函數(shù)相交問題,利用構(gòu)造法和導(dǎo)數(shù)法求出函數(shù)的極值和最值是解決本題的關(guān)鍵.綜合性較強.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,e) | B. | (1,e) | C. | (e,2e) | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
組號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
頻數(shù) | 10 | 13 | x | 14 | 15 | 13 | 12 | 9 |
A. | 0.03 | B. | 0.07 | C. | 0.14 | D. | 0.21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 雙曲線、橢圓 | B. | 橢圓、拋物線 | C. | 雙曲線、拋物線 | D. | 無法確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com