1-2sin40°cos40°
cos40°-
1-sin250°
=
1
1
分析:原式根號(hào)下邊的式子利用同角三角函數(shù)間的基本關(guān)系,完全平方公式,以及二次根式的化簡(jiǎn)公式變形,再利用絕對(duì)值的代數(shù)意義及誘導(dǎo)公式化簡(jiǎn),約分即可得到結(jié)果.
解答:解:∵sin40°<cos40°,∴sin40°-cos40°<0,
則原式=
(sin40°-cos40°)2
cos40°-
(cos50°)2
=
|sin40°-cos40°|
cos40°-|cos50°|
=
cos40°-sin40°
cos40°-sin40°
=1.
故答案為:1
點(diǎn)評(píng):此題考查了二倍角的余弦函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及誘導(dǎo)公式,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cos40°,2sin40°)
,
b
=(0,-1)
則向量
a
b
的夾角為( 。
A、40°B、130°
C、140°D、230°

查看答案和解析>>

同步練習(xí)冊(cè)答案