分析:(Ⅰ)由x
1=a>0,及x
n+1=
(xn+),知x
n>0.從而有x
n+1=
(xn+)≥=(n∈N),所以,當(dāng)n≥2時(shí),x
n≥
成立.
(Ⅱ)證法一:當(dāng)n≥2時(shí),由x
n≥
>0,x
n+1=
(xn+),用作差法知當(dāng)n≥2時(shí),x
n≥x
n+1成立.
證法二:當(dāng)n≥2時(shí),由x
n≥
>0,x
n+1=
(xn+),用作商法知當(dāng)n≥2時(shí),x
n≥x
n+1成立.
(Ⅲ)記
x
n=A,則
x
n+1=A,且A>0.由x
n+1=
(xn+),得A=
(A+).由此能導(dǎo)出
x
n的值.
解答:證明:(Ⅰ)由x
1=a>0,及x
n+1=
(xn+),
可歸納證明x
n>0.
從而有x
n+1=
(xn+)≥=(n∈N),
所以,當(dāng)n≥2時(shí),x
n≥
成立.
(Ⅱ)證法一:當(dāng)n≥2時(shí),
因?yàn)閤
n≥
>0,x
n+1=
(xn+)所以x
n+1-x
n=
(xn+)-xn=•≤0,
故當(dāng)n≥2時(shí),x
n≥x
n+1成立.
證法二:當(dāng)n≥2時(shí),因?yàn)閤
n≥
>0,x
n+1=
(xn+),
所以
==≤=1,
故當(dāng)n≥2時(shí),x
n≥x
n+1成立.
(Ⅲ)解:記
x
n=A,則
x
n+1=A,且A>0.
由x
n+1=
(xn+),得A=
(A+).
由A>0,解得A=
,故
x
n=
.
點(diǎn)評:本小題主要考查數(shù)列、數(shù)列極限、不等式等基本知識,考查邏輯思維能力.