(本題滿分13分)
某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否
具有環(huán)保意識(shí)的調(diào)查. 若生活習(xí)慣具有環(huán)保意識(shí)的稱為“環(huán)保族”,否則稱為 “非環(huán)保族”,得到如下統(tǒng)計(jì)表:
組數(shù) | 分組 | 環(huán)保族人數(shù) | 占本組的頻率 | 本組占樣本的頻率 |
第一組 |
| 120 | 0.6 | 0.2 |
第二組 |
| 195 | p | q |
第三組 |
| 100:] | 0.5 | 0.2 |
第四組 |
| a | 0.4 | 0.15 |
第五組 |
| 30 | 0.3 | 0.1 |
第六組 |
| 15 | 0.3 | 0.05 |
(Ⅰ)求q、n、a、p的值;
(Ⅱ)從年齡段在的“環(huán)保族”中采用分層抽樣法抽取6人參加戶外環(huán);顒(dòng),其中選取2人
作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在的概率.
(本題滿分13分)
某班幾位同學(xué)組成研究性學(xué)習(xí)小組,對歲的人群隨機(jī)抽取n人進(jìn)行了一次日常生活中是否
具有環(huán)保意識(shí)的調(diào)查. 若生活習(xí)慣具有環(huán)保意識(shí)的稱為“環(huán)保族”,否則稱為 “非環(huán)保族”,得到如下統(tǒng)計(jì)表:
組數(shù) | 分組 | 環(huán)保族人數(shù) | 占本組的頻率 | 本組占樣本的頻率 |
第一組 |
| 120 | 0.6 | 0.2 |
第二組 |
| 195 | p | q |
第三組 |
| 100:] | 0.5 | 0.2 |
第四組 |
| a | 0.4 | 0.15 |
第五組 |
| 30 | 0.3 | 0.1 |
第六組 |
| 15 | 0.3 | 0.05 |
(Ⅰ)求q、n、a、p的值;
(Ⅱ)從年齡段在的“環(huán)保族”中采用分層抽樣法抽取6人參加戶外環(huán);顒(dòng),其中選取2人
作為領(lǐng)隊(duì),求選取的2名領(lǐng)隊(duì)中恰有1人年齡在的概率.
解:(Ⅰ)第二組的頻率為:q=1-(0.2+0.2+0.15+0.1+0.05)=0.3
第一組的人數(shù)為,
第一組的頻率為0.2 所以:
第二組人數(shù)為1000×q=1000×0.3=300 所以:
第四組人數(shù)a=1000×0.15=150 所以:a=150×0.4=60
(Ⅱ)因?yàn)?sub>年齡段的“環(huán)保族”與年齡段的“環(huán)保族”人數(shù)比值為
60:30=2:1,采用分層抽樣法抽取6人,年齡段的有4人,年齡段的
有2人;
設(shè)年齡段的4人為a、b、c、d,年齡段的2人為m、n,
則選取2人作為領(lǐng)隊(duì)的有(a,b)、(a,c)、(a,d)、(a,m)、(a,n)、(b,c)、(b,d)、(b,m)
(b,n)、(c,d)、(c,m)、(c,n)、(d,m)、(d,n)、(m,n),共15種;其中恰有1人年齡
在的有(a,m)、(a,n)、(b,m)、(b,n)、(c,m)、(c,n)、(d,m)、(d,n),
共8種
所以選取的2名領(lǐng)隊(duì)中恰有1人年齡在的概率為 。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆天津市高一第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)
已知集合,,.
(1) 求,; (2) 若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆浙江省寧波萬里國際學(xué)校高三上期中理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分13分)的三個(gè)內(nèi)角依次成等差數(shù)列.
(Ⅰ)若,試判斷的形狀;
(Ⅱ)若為鈍角三角形,且,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市朝陽區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題滿分13分)
在銳角中,,,分別為內(nèi)角,,所對的邊,且滿足.
(Ⅰ)求角的大;
(Ⅱ)若,且,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:重慶市09-10學(xué)年高二下學(xué)期5月月考(數(shù)學(xué)文) 題型:解答題
(本題滿分13分)在展開式中,求:
(1)第6項(xiàng); (2) 第3項(xiàng)的系數(shù); (3)常數(shù)項(xiàng)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三上學(xué)期期末考試數(shù)學(xué)理卷(一級(jí)學(xué)校) 題型:解答題
(本題滿分13分)
如圖,在五面體ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.
(Ⅰ)求異面直線BF與DE所成角的余弦值;
(Ⅱ)在線段CE上是否存在點(diǎn)M,使得直線AM與平面CDE所成角的正弦值為?若存在,試確定點(diǎn)M的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com