定義在R上f(x)滿足:f(x+2)•f(x)=1,當(dāng)x∈(0,2)時(shí),f(x)=,則f(2011)=   
【答案】分析:利用題中條件:“f(x+2)•f(x)=1”得出函數(shù)f(x)是周期函數(shù),從而利用當(dāng)x∈(0,2)時(shí),f(x)=,求出f(1)的值,進(jìn)而求出f(2011)即可.
解答:解:∵f(x+2)•f(x)=1
∴f(x+4)•f(x+2)=1,
∴f(x+4)=f(x),
∴f(x)是一個(gè)周期為4的周期函數(shù),
∴f(2011)=f(4×502+3)=f(3)==2.
故答案為:2
點(diǎn)評:本題主要考查了抽象函數(shù)及其應(yīng)用,考查分析問題和解決問題的能力,屬于中檔題.函數(shù)的周期性是高考函數(shù)題的重點(diǎn)考查內(nèi)容,幾個(gè)重要的周期公式要熟悉,如:(1)f(x+a)=f(x-a),則T=2a;(2)f(x+a)=-,則T=2a等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖南省長沙市同升湖實(shí)驗(yàn)學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京五中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)(理科)一輪復(fù)習(xí)講義:2.3 函數(shù)的奇偶性(解析版) 題型:解答題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)猜題精粹(文科)(解析版) 題型:解答題

定義在R上的偶函數(shù)f(x),滿足以f(x+2)=-f(x)且在[0,2]上是減函數(shù),若方程f(x)=m(m>0)在區(qū)間[-2,6]上有四個(gè)不同的根x1,x2,x3,x4,則x1+x2+x3+x4=   

查看答案和解析>>

同步練習(xí)冊答案