在2,x,8,y四個數(shù)中,前三個數(shù)成等比數(shù)列,后三個數(shù)成等差數(shù)列,求x和y.

解:∵2,x,8三個數(shù)是等比數(shù)列,
∴x2=16.
∴x=4,或x=-4,
∵x,8,y三個數(shù)成等差數(shù)列,
∴y-8=8-x,
當(dāng)x=4時,y=12,
當(dāng)x=-4時,y=20.
分析:由2,x,8三個數(shù)是等比數(shù)列,知x=4,或x=-4,由x,8,y三個數(shù)成等差數(shù)列,知y-8=8-x,由此能求出x和y.
點評:本題考查等差數(shù)列和等比數(shù)列的性質(zhì)和應(yīng)用,解題時要認真審題,仔細解答,避免出錯.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個命題中:
①函數(shù)y=tan(x+
π
4
)
的定義域是{x|x≠
π
4
+kπ,k∈Z}
;
②已知sinα=
1
2
,且α∈[0,2π],則α的取值集合是{
π
6
}
;
③函數(shù)f(x)=sin2x+acos2x的圖象關(guān)于直線x=-
π
8
對稱,則a的值等于-1;
④函數(shù)y=cos2x+sinx的最小值為-1.
把你認為正確的命題的序號都填在橫線上
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xy中,O是坐標(biāo)原點,設(shè)函數(shù)f(x)=k(x-2)+3的圖象為直線l,且l與x軸、y軸分別交于A、B兩點,給出下列四個命題:
①使△AOB的面積s=6的直線l僅有一條;
②使△AOB的面積s=8的直線l僅有兩條;
③使△AOB的面積s=12的直線l僅有三條;
④使△AOB的面積s=20的直線l僅有四條.
其中所有真命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在下列四個結(jié)論中,正確的有( 。
(1)x2>4是x3<-8的必要非充分條件;
(2)△ABC中,A>B是sinA>sinB的充要條件;
(3)x+y≠3是x≠1或y≠2的充分非必要條件;
(4)sinx>tanx是cotx<0的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題,其中錯誤的命題有( 。﹤.
(1)將函數(shù)y=sin(2x+
π
3
)
的圖象向右平移
π
3
個單位,得到函數(shù)y=sin2x的圖象;
(2)函數(shù)y=sin2x+cos2x在x∈[0,
π
2
]
上的單調(diào)遞增區(qū)間是[0,
π
8
]
;
(3)設(shè)A、B、C∈(0,
π
2
)
且sinA-sinC=sinB,cosA+cosC=cosB,則B-A等于-
π
3
;
(4)方程sin2x+2sinx+a=0有解,則a的取值范圍是[-3,1].
(5)在同一坐標(biāo)系中,函數(shù)y=sinx與函數(shù)y=
x
2
的圖象有三個交點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案