【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,按其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖中的信息,回答下列問題:
(Ⅰ)補全頻率分布直方圖;
(Ⅱ)估計本次考試的數(shù)學平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(Ⅲ)用分層抽樣的方法在分數(shù)段為[110,130)的學生成績中抽取一個容量為6的樣本,再從這6個樣本中任取2人成績,求至多有1人成績在分數(shù)段[120,130)內的概率.
【答案】解:(Ⅰ)分數(shù)在[120,130)內的頻率1﹣(0.1+0.15+0.15+0.25+0.05)=1﹣0.7=0.3, 因此補充的長方形的高為0.03,補全頻率分布直方圖為:
(Ⅱ)估計平均分為
(Ⅲ)由題意,[110,120)分數(shù)段的人數(shù)與[120,130)分數(shù)段的人數(shù)之比為1:2,
用分層抽樣的方法在分數(shù)段為[110,130)的學生成績中抽取一個容量為6的樣本,
需在[110,120)分數(shù)段內抽取2人成績,分別記為m,n,
在[120,130)分數(shù)段內抽取4人成績,分別記為a,b,c,d,
設“從6個樣本中任取2人成績,至多有1人成績在分數(shù)段[120,130)內”為事件A,
則基本事件共有{(m,n),(m,a),(m,b),(m,c),(m,d),(n,a),
(n,b),(n,c),(n,d),(a,b),(a,c),
(a,d),(b,c),(b,d),(c,d)},共15個.
事件A包含的基本事件有{(m,n),(m,a),(m,b),
(m,c),(m,d),(n,a),(n,b),(n,c),(n,d)}共9個.
∴P(A)= =
【解析】(Ⅰ)求出分數(shù)在[120,130)內的頻率,補充的長方形的高,由此能補全頻率分布直方圖.(Ⅱ)利用頻率分布直方圖能估計平均分.(Ⅲ)用分層抽樣的方法在分數(shù)段為[110,130)的學生成績中抽取一個容量為6的樣本,需在[110,120)分數(shù)段內抽取2人成績,分別記為m,n,在[120,130)分數(shù)段內抽取4人成績,分別記為a,b,c,d,由此利用列舉法能求出至多有1人成績在分數(shù)段[120,130)內的概率.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(1,1),并與直線l1:x﹣y+3=0和l2:2x+y﹣6=0分別交于點A、B,若線段AB被點P平分. 求:
(1)直線l的方程;
(2)以O為圓心且被l截得的弦長為 的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin(2x+φ)的圖象向左平移 個單位,所得到的函數(shù)圖象關于y軸對稱,則φ的一個可能取值為( )
A.
B.
C.0
D.-
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時相應的x的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
(1)若直線l過點A(4,0),且被圓C1截得的弦長為2 ,求直線l的方程
(2)設P為平面上的點,滿足:存在過點P的無窮多對互相垂直的直線l1和l2 , 它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長與直線l2被圓C2截得的弦長相等,求所有滿足條件的點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com