若函數(shù)f(x)=C80x0+C81x1+C82x2+…+C88x8(x∈R),則log2f(3)=
16
16
分析:由已知中,函數(shù)f(x)=C80x0+C81x1+C82x2+…+C88x8(x∈R),由二項(xiàng)式定理,我們易得到函數(shù)f(x)的解析式,進(jìn)而根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),即可得到答案.
解答:解:∵函數(shù)f(x)=C80x0+C81x1+C82x2+…+C88x8(x∈R),
∴f(x)=(x+1)8,
則log2f(3)=log2(3+1)8=log2(4)8=16
故答案為:16
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)的運(yùn)算性質(zhì),二項(xiàng)式定理,其中根據(jù)二項(xiàng)式定理,求出函數(shù)的解析式,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x),g(x)的定義域和值域都是R,則“f(x)<g(x),x∈R”成立的充要條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x+x3,x1,x2∈R,且x1+x2>0,則f(x1)+f(x2)的值(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•廈門(mén)模擬)定義在R上的函數(shù)f(x),其圖象是連續(xù)不斷的,如果存在非零常數(shù)λ(λ∈R,使得對(duì)任意的x∈R,都有f(x+λ)=λf(x),則稱(chēng)y=f(x)為“倍增函數(shù)”,λ為“倍增系數(shù)”,下列命題為真命題的是
①③④
①③④
(寫(xiě)出所有真命題對(duì)應(yīng)的序號(hào)).
①若函數(shù)y=f(x)是倍增系數(shù)λ=-2的倍增函數(shù),則y=f(x)至少有1個(gè)零點(diǎn);
②函數(shù)f(x)=2x+1是倍增函數(shù),且倍增系數(shù)λ=1;
③函數(shù)f(x)=
e
-x
 
是倍增函數(shù),且倍增系數(shù)λ∈(0,1);
④若函數(shù)f(x)=sin(2ωx)(ω>0)是倍增函數(shù),則ω=
2
(k∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=ax3+bx2+cx+d滿足f(0)=f(x1)=f(x2)=0(0<x1<x2),且在區(qū)間[x2,+∞)上單調(diào)遞增,則實(shí)數(shù)b的取值范圍是
b<0
b<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=sinωx+acosωx(ω>0)的圖象關(guān)于點(diǎn)M(
π
3
,0)
對(duì)稱(chēng),且滿足f(
π
6
-x
)=f(
π
6
+x
),則a+ω的一個(gè)可能的取值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案