橢圓的焦距是2,則=(    )
A.5B.3C.5或3D.2
C

試題分析:當(dāng)焦點(diǎn)在x軸時,當(dāng)焦點(diǎn)在y軸時5或3
點(diǎn)評:求解本題要注意分焦點(diǎn)在x軸y軸兩種情況,當(dāng)焦點(diǎn)在x軸時方程為,當(dāng)焦點(diǎn)在y軸時方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓的左,右焦點(diǎn),為橢圓上的動點(diǎn),且的最大值為1,最小值為-2.
(I)求橢圓的方程;
(II)過點(diǎn)作不與軸垂直的直線交該橢圓于兩點(diǎn),為橢圓的左頂點(diǎn)。試判斷的大小是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓動圓與圓外切并與圓內(nèi)切,圓心的軌跡為曲線.
(1)求的方程;
(2)是與圓,圓都相切的一條直線,與曲線交于兩點(diǎn),當(dāng)圓的半徑最長時,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F1、F2是橢圓E:的左、右焦點(diǎn),P為直線上一點(diǎn),△F2PF1是底角為30°的等腰三角形,則E的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓具有 (   )
A.相同的長軸長B.相同的焦點(diǎn)
C.相同的離心率D.相同的頂點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,設(shè)點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)若是橢圓上的動點(diǎn),求線段中點(diǎn)的軌跡方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,且過雙曲線的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對稱的任意兩點(diǎn), 為該雙曲線上的動點(diǎn),若直線均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個關(guān)于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程,不同時為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,且過點(diǎn).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn),若是橢圓上的動點(diǎn),求線段的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是橢圓+=1的兩焦點(diǎn),經(jīng)點(diǎn)F2的直線交橢圓于點(diǎn)A、B,若|AB|=5,則|AF1|+|BF1|等于(  )
A.11           B.10           C.9        D.16

查看答案和解析>>

同步練習(xí)冊答案