下列命題中的假命題是(  )
A、?x∈R,sinx=
5
2
B、?x∈R,log2x=1
C、?x∈R,(
1
2
)
x
>0
D、?x∈R,x2≥0
考點:命題的真假判斷與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用,簡易邏輯
分析:根據(jù)正弦函數(shù)的圖象和性質(zhì),可判斷A;根據(jù)對數(shù)函數(shù)的圖象和性質(zhì),可判斷B;根據(jù)指數(shù)函數(shù)的圖象和性質(zhì),可判斷C;根據(jù)二次函數(shù)的圖象和性質(zhì),可判斷D;
解答: 解:sinx∈[-1,1],
5
2
∉[-1,1],故A錯誤;
?x=2∈R,使log2x=1,故B正確;
?x∈R,(
1
2
)
x
>0,故C正確;
?x∈R,x2≥0,故D正確;
故選:A
點評:本題以命題的真假判斷為載體考查了正弦函數(shù)的圖象和性質(zhì),對數(shù)函數(shù)的圖象和性質(zhì),指數(shù)函數(shù)的圖象和性質(zhì),二次函數(shù)的圖象和性質(zhì),難度不大,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}是遞增數(shù)列,且滿足a4•a7=15,a3+a8=8
(1)求數(shù)列{an}的通項公式;
(2)令bn=
an
3n-1
,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1,E,F(xiàn)是BD上的動點,是AD1上的動點,則( 。
A、VC-C1EF=VA-C1EF=VP-C1EF
B、VC-C1EF=VA-C1EFVP-C1EF
C、VC-C1EF=VA-C1EFVP-C1EF
D、VC-C1EFVA-C1EFVP-C1EF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程x
1
2
=logsin1x的實根個數(shù)是
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(x-1)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,右頂點為A,P為橢圓C1上任意一點.
(1)求
PF1
PF2
 的最大值;
(2)設(shè)雙曲線C2以橢圓C1的焦點為頂點,頂點為焦點,B是雙曲線C2在第一象限上任意一點,當(dāng)
PF1
PF2
的最大值為3c2時,是否存在常數(shù)λ(λ>0),使得∠BAF1=λ∠BF1A恒成立?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=x2+ax+1在(1,+∞)上單調(diào)遞增,命題q:函數(shù)g(x)=xa在R上是增函數(shù).
(1)若p或q為真命題,求a的取值范圍;
(2)若?p或?q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>1,則函數(shù)f(x)=4x+
1
x-1
+1的最小值是( 。
A、7B、9C、11D、13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x)=
x+m
x2+nx+1

(1)求m,n的值;
(2)用定義證明f(x)在(-1,1)上為增函數(shù);
(3)若f(x)≤
a
3
x∈[-
1
3
,
1
3
]
恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案