已知兩點(diǎn)、,且的等差中項(xiàng),則動(dòng)點(diǎn)的軌跡方程是( )

A. B. C. D.

 

C

【解析】

試題分析:設(shè),由題可知,根據(jù)兩點(diǎn)間距離公式得,化簡(jiǎn)可得

考點(diǎn):曲線與方程.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆遼寧省大連市五校高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若定義在R上的函數(shù)f(x)的導(dǎo)函數(shù)為,且滿足,則的大小關(guān)系為( ).

A、< B、=

C、> D、不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆貴州省高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:x2+y2+2x-4y+3=0,若圓C的切線在x軸、y軸上的截距相等,求切線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆貴州省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知雙曲線的兩個(gè)焦點(diǎn)為點(diǎn)在雙曲線C上.

(1)求雙曲線C的方程;

(2)記O為坐標(biāo)原點(diǎn),過點(diǎn)Q (0,2)的直線l與雙曲線C相交于不同的兩點(diǎn)E、F,若△OEF的面積為求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆貴州省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:填空題

按流程圖的程序計(jì)算,若開始輸入的值為,則輸出的的值是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆貴州省高二下學(xué)期期中文科數(shù)學(xué)試卷(解析版) 題型:選擇題

將參數(shù)方程化為普通方程為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)模塊練習(xí)卷(解析版) 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):

日銷售量(件)

0

1

2

3

頻數(shù)

1

5

9

5

試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變).設(shè)某天開始營業(yè)時(shí)由該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率.

(1)求當(dāng)天商店不進(jìn)貨的概率;

(2)記X為第二天開始營業(yè)時(shí)該商品視為件數(shù),求X的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)3章練習(xí)卷(解析版) 題型:解答題

某商場(chǎng)經(jīng)營一批進(jìn)價(jià)是30元/臺(tái)的小商品,在市場(chǎng)試驗(yàn)中發(fā)現(xiàn),此商品的銷售單價(jià)x(x取整數(shù))元與日銷售量y臺(tái)之間有如下關(guān)系:

x

35

40

45

50

y

56

41

28

11

(1)畫出散點(diǎn)圖,并判斷y與x是否具有線性相關(guān)關(guān)系?

(2)求日銷售量y對(duì)銷售單價(jià)x的線性回歸方程;

(3)設(shè)經(jīng)營此商品的日銷售利潤(rùn)為P元,根據(jù)(1)寫出P關(guān)于x的函數(shù)關(guān)系式,并預(yù)測(cè)當(dāng)銷售單價(jià)x為多少元時(shí),才能獲得最大日銷售利潤(rùn).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆蘇教版選修2-3高二數(shù)學(xué)雙基達(dá)標(biāo)2章練習(xí)卷(解析版) 題型:解答題

某籃球隊(duì)與其他6支籃球隊(duì)依次進(jìn)行6場(chǎng)比賽,每場(chǎng)均決出勝負(fù),設(shè)這支籃球隊(duì)與其他籃球隊(duì)比賽勝場(chǎng)的事件是獨(dú)立的,并且勝場(chǎng)的概率是.

(1)求這支籃球隊(duì)首次勝場(chǎng)前已經(jīng)負(fù)了兩場(chǎng)的概率;

(2)求這支籃球隊(duì)在6場(chǎng)比賽中恰好勝了3場(chǎng)的概率;

(3)求這支籃球隊(duì)在6場(chǎng)比賽中勝場(chǎng)數(shù)的期望和方差.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案