已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(3) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.
解:(1)設(shè)圓心為().由于圓與直線相切,且半徑為,所以 ,即.因為為整數(shù),故.
故所求圓的方程為. …………………………………4分
(Ⅱ)把直線即.代入圓的方程,消去整理,得
.
由于直線交圓于兩點,故.
即,由于,解得.
所以實數(shù)的取值范圍是.………………………………………8分
(3)設(shè)符合條件的實數(shù)存在,由于,則直線的斜率為,
的方程為, 即.
由于垂直平分弦,故圓心必在上.
所以,解得.由于,
故存在實數(shù),使得過點的直線垂直平分弦.……………12分
【解析】此題考查了直線與圓相交的性質(zhì),以及直線與圓的位置關(guān)系,涉及的知識有:點到直線的距離公式,一元二次方程根的判別式與解的關(guān)系,一元二次不等式的解法,解題的關(guān)鍵是:當(dāng)直線與圓相切時,圓心到直線的距離等于圓的半徑;將直線與圓的方程聯(lián)立消去y后,得到關(guān)于x的一元二次方程,此一元二次方程的解的個數(shù)決定了直線與圓交點的個數(shù)(1)設(shè)圓心M的坐標(biāo)為(m,0),且m是整數(shù),由圓C與已知直線垂直,得到圓心到直線的距離等于圓的半徑,利用點到直線的距離公式列出關(guān)于m的方程,求出方程的解得到m的值,進(jìn)而確定出圓C的方程;
(2)由直線ax-y+5=0,表示出y,代入圓的方程消去y,得到關(guān)于x的一元二次方程,根據(jù)直線與圓有兩個交點,得到根的判別式大于0,列出關(guān)于a的不等式,求出不等式的解集即可得到a的取值范圍.
(3)假設(shè)存在利用推理得到結(jié)論。
科目:高中數(shù)學(xué) 來源:2014屆廣東省高一5月月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分)
已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(3) 在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高一第三模塊數(shù)學(xué)試卷(解析版) 題型:解答題
已知半徑為的圓的圓心在軸上,且與直線相切.圓心的橫坐標(biāo)是整數(shù)。
(1)求圓的方程;
(2)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(3) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省等五校高一第一學(xué)期期末聯(lián)考數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省高一下學(xué)期第一次月考數(shù)學(xué)試卷 題型:解答題
已知半徑為的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.
(Ⅰ)求圓的方程;
(Ⅱ)設(shè)直線與圓相交于兩點,求實數(shù)的取值范圍;
(Ⅲ) 在(Ⅱ)的條件下,是否存在實數(shù),使得弦的垂直平分線過點,若存在,求出實數(shù)的值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com