關(guān)于x的不等式|ax+1|+a|x+1|≥3a.
(I)當(dāng)a=1時(shí),解上述不等式.
(II)當(dāng)a<0時(shí),若上述不等式恒成立,求實(shí)數(shù)a的取值范圍.
分析:(I)把a(bǔ)=1代入不等式|ax+1|+a|x+1|≥3a,根據(jù)絕對(duì)值不等式的解法解不等式;
(II)當(dāng)a<0時(shí),把不等式|ax+1|+a|x+1|≥3a等價(jià)變形為|x+1|-|x+
|≤3恒成立,根據(jù)絕對(duì)值不等式的幾何意義求最值.
解答:解:(I)當(dāng)a=1時(shí),不等式|ax+1|+a|x+1|≥3a為2|x+1|≥3
∴x+1≥
或x+1
≤-解得:{x|x≤-
或x≥
}
(II)當(dāng)a<0時(shí),不等式|ax+1|+a|x+1|≥3a?-a|x+
|+a|x+1|≥3a?|x+1|-|x+
|≤3恒成立根據(jù)絕對(duì)值的幾何意義得|-1+
|≤3?1-
≤3,解得a≤-
.
點(diǎn)評(píng):考查應(yīng)用絕對(duì)值的幾何意義求最值,體現(xiàn)了轉(zhuǎn)化的思想,而對(duì)于含有參數(shù)的問(wèn)題,增加了試題的難度,屬中等題.