已知雙曲線C的中心在原點(diǎn),拋物線y2=2
5
x
的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn)(1,
3
)
,又知直線l:y=kx+1與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若
OA
OB
,求實(shí)數(shù)k值.
(1)拋物線的焦點(diǎn)是(
5
2
,0
),則雙曲線的c=
5
2
.…(1分)
設(shè)雙曲線方程:
x2
a2
-
y2
b2
=1,則有
1
a2
-
3
b2
=1
…(2分)
解得:a2=
1
4
,b2=1⇒方程為:4x2-y2=1
…(5分)
(2)聯(lián)立方程:
y=kx+1
4x2-y2=1
⇒(4-k2)x2-2kx-2=0

當(dāng)△>0時(shí),得-2
2
<k<2
2
(且k≠±2)
…(7分)(未寫△扣1分)
由韋達(dá)定理:x1+x2=
2k
4-k2
x1x2=
-2
4-k2
…(8分)
設(shè)A(x1,y1),B(x1+x2),由
OA
OB
x1x2+y1y2=0
即(1+k2)x1x2+k(x1+x2)+1=0代入可得:k2=2,k=±
2
,檢驗(yàn)合格.…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓C:
x2
4
+
y2
m
=1(0<m<4)的左頂點(diǎn)為A,M是橢圓C上異于點(diǎn)A的任意一點(diǎn),點(diǎn)P與點(diǎn)A關(guān)于點(diǎn)M對稱.
(1)若點(diǎn)P的坐標(biāo)為(4,3),求m的值;
(2)若橢圓C上存在點(diǎn)M,使得OP⊥OM,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線C:
x2
m+2
+
y2
3-m
=1
(m∈R).
(Ⅰ)若曲線C是焦點(diǎn)在x軸上的橢圓,求m的取值范圍;
(Ⅱ)設(shè)m=2,過點(diǎn)D(0,4)的直線l與曲線C交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn),若∠OMN為直角,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過如下五個(gè)點(diǎn)中的三個(gè)點(diǎn):P1(-1,-
2
2
)
,P2(0,1),P3(
1
2
2
2
)
,P4(1,
2
2
)
,P5(1,1).
(Ⅰ)求橢圓M的方程;
(Ⅱ)設(shè)點(diǎn)A為橢圓M的左頂點(diǎn),B,C為橢圓M上不同于點(diǎn)A的兩點(diǎn),若原點(diǎn)在△ABC的外部,且△ABC為直角三角形,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,過拋物線y2=2px(p>0)的焦點(diǎn)F的兩條互相垂直的直線與拋物線分別交于點(diǎn)A、B和C、D;拋物線上的點(diǎn)T(2,t)(t>0)到焦點(diǎn)的距離為3.
(1)求p、t的值;
(2)當(dāng)四邊形ACBD的面積取得最小值時(shí),求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,直線l:y=x+b與拋物線x2=4y相切于點(diǎn)A.
(1)求實(shí)數(shù)b的值;
(2)若過拋物線的焦點(diǎn)且平行于直線l的直線l1交拋物線于B,C兩點(diǎn),求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知△ABC的頂點(diǎn)A(0,-1),B(0,1),直線AC,直線BC的斜率之積等于m(m0),求頂點(diǎn)C的軌跡方程,并判斷軌跡為何種圓錐曲線.
(2)已知圓M的方程為:(x+1)2+y2=(2a)2(a>0,且a1),定點(diǎn)N(1,0),動(dòng)點(diǎn)P在圓M上運(yùn)動(dòng),線段PN的垂直平分線與直線MP相交于點(diǎn)Q,求點(diǎn)Q軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
2
2
,直線l:y=x+2與原點(diǎn)為圓心,以橢圓C的短軸長為直徑的圓相切.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)M(0,2)的直線l1與橢圓C交于G,H兩點(diǎn).設(shè)直線l1的斜率k>0,在x軸上是否存在點(diǎn)P(m,0),使得△PGH是以GH為底邊的等腰三角形.如果存在,求出實(shí)數(shù)m的取值范圍,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,兩個(gè)焦點(diǎn)分別為F1和F2,橢圓C上一點(diǎn)到F1和F2的距離之和為12.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點(diǎn)B是橢圓C的上頂點(diǎn),點(diǎn)P,Q是橢圓上;異于點(diǎn)B的兩點(diǎn),且PB⊥QB,求證直線PQ經(jīng)過y軸上一定點(diǎn).

查看答案和解析>>

同步練習(xí)冊答案