如圖所示,矩形ABCD中,AB=a,AD=b,過(guò)點(diǎn)D作DE⊥AC于E,交直線AB于F.現(xiàn)將△ACD沿對(duì)角線AC折起到△PAC的位置,使二面角PACB的大小為60°.過(guò)P作PH⊥EF于H.

(1)求證:PH⊥平面ABC;
(2)若a+b=2,求四面體PABC體積的最大值.
(1)見解析   (2)

(1)證明:∵DF⊥AC,
∴折起后AC⊥PE,AC⊥EF,
∴AC⊥平面PEF,
又PH?平面PEF,
∴AC⊥PH,
又PH⊥EF,EF∩AC=E,
∴PH⊥平面ABC.
(2)解:∵PE⊥AC,EF⊥AC,
∴∠PEF就是二面角PACB的平面角,
∴∠PEF=60°,
∴Rt△PHE中,PH=PE,
折起前,Rt△ADC中,
DE==,
S△ABC=ab,
折起后,PE=DE,
∴PH=PE=·,
=PH·S△ABC
=···ab
=·,
∵a+b=2,a>0,b>0,
==,
當(dāng)且僅當(dāng)a=b=1時(shí),兩個(gè)等號(hào)同時(shí)成立,
因此()max=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖所示的幾何體中,四邊形為正方形,四邊形為等腰梯形,,,,.

(1)求證:平面
(2)求四面體的體積;
(3)線段上是否存在點(diǎn),使平面?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點(diǎn)O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在如圖所示的幾何體中,是邊長(zhǎng)為的正三角形,,平面,平面平面,,且.

(1)證明://平面
(2)證明:平面平面;
(3)求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐P­ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,EF分別為棱BC,AD的中點(diǎn).
 
(1)求證:DE∥平面PFB;
(2)已知二面角P­BF­C的余弦值為,求四棱錐P­ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一個(gè)底面半徑為的圓柱形量杯中裝有適量的水若放入一個(gè)半徑為的實(shí)心鐵球,水面高度恰好升高,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知OA為球O的半徑,過(guò)OA的中點(diǎn)M且垂直于OA的平面截球面得到圓M.若圓M的面積為3π,則球O的表面積等于    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是  寸.
(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=3cm,AA1=2cm,則四棱錐A-BB1D1D的體積為    cm3.

查看答案和解析>>

同步練習(xí)冊(cè)答案