分析 由向量加法的三角形法則得出$\overrightarrow{CM}$=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$,再利用向量數(shù)量積的運算性質(zhì)求出結(jié)果.
解答 解:等腰△ABC中,CA=CB=6,∠ACB=120°,且$\overrightarrow{BM}$=2$\overrightarrow{MA}$,
∴$\overrightarrow{CM}$=$\overrightarrow{CB}$+$\frac{2}{3}$$\overrightarrow{BA}$
=$\overrightarrow{CB}$+$\frac{2}{3}$($\overrightarrow{CA}$-$\overrightarrow{CB}$)
=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$,
∴$\overrightarrow{CM}$•$\overrightarrow{CB}$=($\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$)•$\overrightarrow{CB}$
=$\frac{2}{3}$$\overrightarrow{CA}$•$\overrightarrow{CB}$+$\frac{1}{3}$${\overrightarrow{CB}}^{2}$
=$\frac{2}{3}$×6×6×cos120°+$\frac{1}{3}$×62
=0.
故答案為:0.
點評 本題考查了平面向量的運算性質(zhì)、向量加法的三角形法則應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8+r2 | B. | 8+2r2 | C. | 16+r2 | D. | 16+2r2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com