【題目】已知函數(shù)f(x)=2sinxcosx+2 x.
(1)求函數(shù)f(x)的最小正周期;
(2)當(dāng) 時(shí),求函數(shù)f(x)的最大值和最小值.

【答案】
(1)解:函數(shù)f(x)=2sinxcosx+2 x.

化簡(jiǎn)可得:f(x)=sin2x+ cos2x=2sin(2x+ )+

函數(shù)f(x)的最小正周期T=π.


(2)解:當(dāng) 時(shí),

那么:2x+ ∈[﹣ ,π],

則sin(2x+ )∈[ ,1],

當(dāng)2x+ =﹣ 時(shí),函數(shù)f(x)取得最小值為0.

當(dāng)2x+ = 時(shí),函數(shù)f(x)取得最大值為2+

∴函數(shù)f (x)的最小值為0,最大值為2


【解析】(1)利用二倍角,輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,再利用周期公式求函數(shù)的最小正周期;(2)當(dāng) 時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解三角函數(shù)的最值(函數(shù),當(dāng)時(shí),取得最小值為;當(dāng)時(shí),取得最大值為,則,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA= ,E,F(xiàn)分別是PB,BC的中點(diǎn),則EF與平面PAB所成的角等于(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|< )的最大值為2 ,最小值為﹣ ,周期為π,且圖象過(guò)(0,﹣ ).
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=﹣3x2+a(6﹣a)x+c.
(1)當(dāng)c=19時(shí),解關(guān)于a的不等式f(1)>0;
(2)若關(guān)于x的不等式f(x)>0的解集是(﹣1,3),求實(shí)數(shù)a,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為 ,且過(guò)點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC、BD過(guò)原點(diǎn)O,若 . (i) 求 的最值;
(ii) 求四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影O為AC的中點(diǎn),A1O=2,AB⊥BC,AB=BC= 點(diǎn)P在線段A1B上,且cos∠PAO= ,則直線AP與平面A1AC所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于x的不等式ax﹣b<0的解集是(1,+∞),則關(guān)于x的不等式(ax+b)(x﹣3)>0的解集是(
A.(﹣∞,﹣1)∪(3,+∞)
B.(1,3)
C.(﹣1,3)
D.(﹣∞,1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,左,右焦點(diǎn)分別是F1 , F2 , 以F1為圓心以3為半徑的圓與以F2為圓心以1為半徑的圓相交,且交點(diǎn)在橢圓C上. (Ⅰ)求橢圓C的方程;
(Ⅱ)線段PQ是橢圓C過(guò)點(diǎn)F2的弦,且
(i)求△PF1Q的周長(zhǎng);
(ii)求△PF1Q內(nèi)切圓面積的最大值,并求取得最大值時(shí)實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,左頂點(diǎn)、上頂點(diǎn)分別為A,B,△OAB的面積為3(點(diǎn)O為坐標(biāo)原點(diǎn)).
(1)求橢圓C的方程;
(2)若P、Q分別是AB、橢圓C上的動(dòng)點(diǎn),且 (λ<0),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案