9.如圖,三棱錐A-BCD中,BC⊥CD,AD⊥平面BCD,E、F分別為BD、AC的中點(diǎn).
(I)證明:EF⊥CD;
(II)若BC=CD=AD=1,求點(diǎn)E到平面ABC的距離.

分析 (I)取CD的中點(diǎn)G,連接EG,F(xiàn)G,證明CD⊥平面EFG,即可證明:EF⊥CD;
(II)利用等體積方法,求點(diǎn)E到平面ABC的距離.

解答 (I)證明:取CD的中點(diǎn)G,連接EG,F(xiàn)G,
∵E為BD的中點(diǎn),∴EG∥BC,
∵BC⊥CD,∴EG⊥CD,
同理FG∥AD,AD⊥平面BCD,∴FG⊥平面BCD,∴FG⊥CD,
∵EG∩FG=G,∴CD⊥平面EFG,
∴EF⊥CD;
(II)解:S△ABC=$\frac{1}{2}AC•BC$=$\frac{\sqrt{2}}{2}$,S△BCE=$\frac{1}{2}BE•CE$=$\frac{1}{4}$,
設(shè)點(diǎn)E到平面ABC的距離為h,則$\frac{1}{3}×\frac{1}{4}×1=\frac{1}{3}×\frac{\sqrt{2}}{2}h$,∴h=$\frac{\sqrt{2}}{4}$,
即點(diǎn)E到平面ABC的距離為$\frac{\sqrt{2}}{4}$.

點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查等體積法求點(diǎn)E到平面ABC的距離,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且bcosC=(2a-c)cosB.
(1)求角B的值;
(2)若a,b,c成等差數(shù)列,且b=3,求ABB1A1面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某同學(xué)用“五點(diǎn)法”畫函數(shù)f(x)=Asin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
x            $\frac{π}{3}$      $\frac{5π}{6}$        
Asin(ωx+φ)02-20
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.定義域是一切實(shí)數(shù)的函數(shù)y=f(x),其圖象是連續(xù)不斷的,且存在常數(shù)λ(λ∈R)使得f(x+λ)+λf(x)=0對(duì)任意實(shí)數(shù)x都成立,則稱f(x)實(shí)數(shù)一個(gè)“λ一半隨函數(shù)”,有下列關(guān)于“λ一半隨函數(shù)”的結(jié)論:①若f(x)為“1一半隨函數(shù)”,則f(0)=f(2);②存在a∈(1,+∞)使得f(x)=ax為一個(gè)“λ一半隨函數(shù);③“$\frac{1}{2}$一半隨函數(shù)”至少有一個(gè)零點(diǎn);④f(x)=x2是一個(gè)“λ一班隨函數(shù)”;其中正確的結(jié)論的個(gè)數(shù)是(  )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖一半徑為3米的水輪,水輪的圓心O距離水面2米,已知水輪每分鐘旋轉(zhuǎn)4圈,水輪上的點(diǎn)P到水面的距離y(米)與時(shí)間x(秒)滿足函數(shù)關(guān)系y=Asin(ωx+φ)+2則有( 。
A.ω=$\frac{2π}{15}$,A=3B.ω=$\frac{2π}{15}$,A=5C.ω=$\frac{15π}{2}$,A=5D.ω=$\frac{15π}{2}$,A=3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.集合U={1,2,3,4,5,6},A={1,3,5},B={2,4,5},則A∩∁UB=( 。
A.{1}B.{1,3}C.{1,3,6}D.{2,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.高一年級(jí)某班共有學(xué)生64人,其中女生28人,現(xiàn)用分層抽樣的方法,選取16人參加一項(xiàng)活動(dòng),則應(yīng)選取男生人數(shù)是( 。
A.9B.8C.7D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\frac{2x}{{2}^{x}+1}$的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知等比數(shù)列{an}前n項(xiàng)和為Sn,且S3=8,S6=9,則公比q=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案