若直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,則a的值為(  ).
A.-1 B.1 C.3D.-3
B

試題分析:因為直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,所以圓心坐標(biāo)適合直線方程。將圓心坐標(biāo)(-1,2)代入3x+y+a=0得,a=1,故選B.
點評:簡單題,直線3x+y+a=0過圓x2+y2+2x-4y=0的圓心,圓心坐標(biāo)適合直線方程。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知圓C經(jīng)過直線與坐標(biāo)軸的兩個交點,且經(jīng)過拋物線的焦點,則圓C的方程為             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知集合, 。若存在實數(shù)使得成立,稱點為“£”點,則“£”點在平面區(qū)域內(nèi)的個數(shù)是  
A.0B.1C.2D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓和定點,由圓外一點向圓引切線,切點為,且滿足
(Ⅰ)求實數(shù)間滿足的等量關(guān)系;
(Ⅱ)求線段長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分16分,第1小題4分,第2小題6分,第3小題6分)
設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1B2,且△AB1B2是面積為的直角三角形.過1作直線l交橢圓于PQ兩點.
(1) 求該橢圓的標(biāo)準(zhǔn)方程;
(2) 若,求直線l的方程;
(3) 設(shè)直線l與圓Ox2+y2=8相交于MN兩點,令|MN|的長度為t,若t,求△B2PQ的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓上恰有三個不同的點到直線的距離為,則____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點.
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;
(3)已知直線l上一點M在第一象限,兩質(zhì)點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設(shè)運動時間為t秒.問:當(dāng)t為何值時直線PQ與圓C1相切?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線經(jīng)過點P(-4,-3),且被圓截得的弦長為8,則直線的方程是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如果直線與曲線有公共點,那么的取值范圍是             

查看答案和解析>>

同步練習(xí)冊答案