4.在銳角三角形ABC中,若sinA=2sinBsinC,則tanAtanBtanC的最小值是8.

分析 結(jié)合三角形關(guān)系和式子sinA=2sinBsinC可推出sinBcosC+cosBsinC=2sinBsinC,進而得到tanB+tanC=2tanBtanC,結(jié)合函數(shù)特性可求得最小值.

解答 解:由sinA=sin(π-A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,
可得sinBcosC+cosBsinC=2sinBsinC,①
由三角形ABC為銳角三角形,則cosB>0,cosC>0,
在①式兩側(cè)同時除以cosBcosC可得tanB+tanC=2tanBtanC,
又tanA=-tan(π-A)=-tan(B+C)=-$\frac{tanB+tanC}{1-tanBtanC}$ ②,
則tanAtanBtanC=-$\frac{tanB+tanC}{1-tanBtanC}$•tanBtanC,
由tanB+tanC=2tanBtanC可得tanAtanBtanC=-$\frac{2(tanBtanC)^{2}}{1-tanBtanC}$,
令tanBtanC=t,由A,B,C為銳角可得tanA>0,tanB>0,tanC>0,
由②式得1-tanBtanC<0,解得t>1,
tanAtanBtanC=-$\frac{2{t}^{2}}{1-t}$=-$\frac{2}{\frac{1}{{t}^{2}}-\frac{1}{t}}$,
$\frac{1}{{t}^{2}}-\frac{1}{t}$=($\frac{1}{t}-\frac{1}{2}$)2-$\frac{1}{4}$,由t>1得,-$\frac{1}{4}$≤$\frac{1}{{t}^{2}}-\frac{1}{t}$<0,
因此tanAtanBtanC的最小值為8,
另解:由已知條件sinA=2sinBsinc,sin(B十C)=2sinBsinC,
sinBcosC十cosBsinC=2sinBcosC,
兩邊同除以cosBcosC,tanB十tanC=2tanBtanC,
∵-tanA=tan(B十C)=$\frac{tanB+tanC}{1-tanBtanC}$,
∴tanAtanBtanC=tanA十tanB十tanC,
∴tanAtanBtanC=tanA十2tanBtanC≥2$\sqrt{2tanAtanBtanC}$,
令tanAtanBtanC=x>0,
即x≥2$\sqrt{2x}$,即x≥8,或x≤0(舍去),所以x的最小值為8.
當(dāng)且僅當(dāng)t=2時取到等號,此時tanB+tanC=4,tanBtanC=2,
解得tanB=2+$\sqrt{2}$,tanC=2-$\sqrt{2}$,tanA=4,(或tanB,tanC互換),此時A,B,C均為銳角.

點評 本題考查了三角恒等式的變化技巧和函數(shù)單調(diào)性知識,有一定靈活性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知方程$\frac{x^2}{m^2+n}$-$\frac{y^2}{3m^2-n}$=1表示雙曲線,且該雙曲線兩焦點間的距離為4,則n的取值范圍是(  )
A.(-1,3)B.(-1,$\sqrt{3}$)C.(0,3)D.(0,$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,直線y=x與橢圓C交于點E,F(xiàn),直線y=-x與橢圓C交于點G,H,且四邊形EHFG的面積為$\frac{16}{5}$.
(1)求橢圓C的方程;
(2)過橢圓C的左頂點A作直線l1交橢圓C于另一點P,過點A作垂直于l1的直線l1,l2交橢圓C于另一點Q,當(dāng)直線l1的斜率變化時,直線PQ是否過x軸上的一定點?若過定點,求出該定點的坐標(biāo),若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=(1+2i)(3-i),其中i為虛數(shù)單位,則z的實部是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義在區(qū)間[0,3π]上的函數(shù)y=sin2x的圖象與y=cosx的圖象的交點個數(shù)是7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(1)設(shè)a=2,b=$\frac{1}{2}$.
①求方程f(x)=2的根;
②若對于任意x∈R,不等式f(2x)≥mf(x)-6恒成立,求實數(shù)m的最大值;
(2)若0<a<1,b>1,函數(shù)g(x)=f(x)-2有且只有1個零點,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若cosA=$\frac{4}{5}$,cosC=$\frac{5}{13}$,a=1,則b=$\frac{21}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某學(xué)校運動會的立定跳遠和30秒跳繩兩個單項比賽分成預(yù)賽和決賽兩個階段,表中為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號  2 4 6 8 10
 立定跳遠(單位:米) 1.961.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60
 30秒跳繩(單位:次) 63 7560  6372 70a-1  b65 
在這10名學(xué)生中,進入立定跳遠決賽的有8人,同時進入立定跳遠決賽和30秒跳繩決賽的有6人,則( 。
A.2號學(xué)生進入30秒跳繩決賽B.5號學(xué)生進入30秒跳繩決賽
C.8號學(xué)生進入30秒跳繩決賽D.9號學(xué)生進入30秒跳繩決賽

查看答案和解析>>

同步練習(xí)冊答案