在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)f(n)可近似地用函數(shù)f(n)=100•(Acos(ωn+2)+k)來刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份;A和k是正整數(shù);ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)(2)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.
【答案】分析:(1)根據(jù)三條規(guī)律,知該函數(shù)為周期為12的周期函數(shù),進(jìn)而求得ω,利用規(guī)律②可求得函數(shù)的最大值和最小值,則可求得三角函數(shù)解析式中的振幅A;同時根據(jù)n=2時,f(2)的值求得k,則函數(shù)的解析式可得.
(2)利用余弦函數(shù)的性質(zhì)根據(jù)題意求得cos(n+2)的范圍進(jìn)而求得n的范圍,根據(jù)n∈[1,12],n∈N*,進(jìn)而求得n的值.
解答:解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.
由此可得,;
由規(guī)律②可知,f(n)max=f(8)=100A+100k,f(n)min
=f(2)=-100A+100kf(8)-f(2)=200A=400⇒A=2;
又當(dāng)n=2時,,
所以,k≈2.99,由條件k是正整數(shù),故取k=3.
綜上可得,符合條件.
(2)由條件,
可得,k∈Z,
k∈Z,k∈Z.
因為n∈[1,12],n∈N*,所以當(dāng)k=1時,6.18<n<10.18,
故n=7,8,9,10,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.
點評:本題主要考查了在實際問題中建立三角函數(shù)模型的問題.解題的技巧是從問題中發(fā)現(xiàn)周期變化的規(guī)律,并將所發(fā)現(xiàn)的規(guī)律抽象為恰當(dāng)?shù)娜呛瘮?shù)模型.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)f(n)可近似地用函數(shù)f(n)=100•(Acos(ωn+2)+k)來刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份;A和k是正整數(shù);ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省南京市高三(上)期中數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)f(n)可近似地用函數(shù)f(n)=100•(Acos(ωn+2)+k)來刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份;A和k是正整數(shù);ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)(2)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)f(n)可近似地用函數(shù)f(n)=100•(Acos(ωn+2)+k)來刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份;A和k是正整數(shù);ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)(2)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市普陀區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

在某個旅游業(yè)為主的地區(qū),每年各個月份從事旅游服務(wù)工作的人數(shù)會發(fā)生周期性的變化.現(xiàn)假設(shè)該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)f(n)可近似地用函數(shù)f(n)=100•(Acos(ωn+2)+k)來刻畫.其中:正整數(shù)n表示月份且n∈[1,12],例如n=1時表示1月份;A和k是正整數(shù);ω>0.統(tǒng)計發(fā)現(xiàn),該地區(qū)每年各個月份從事旅游服務(wù)工作的人數(shù)有以下規(guī)律:
①各年相同的月份,該地區(qū)從事旅游服務(wù)工作的人數(shù)基本相同;
②該地區(qū)從事旅游服務(wù)工作的人數(shù)最多的8月份和最少的2月份相差約400人;
③2月份該地區(qū)從事旅游服務(wù)工作的人數(shù)約為100人,隨后逐月遞增直到8月份達(dá)到最多.
(1)試根據(jù)已知信息,確定一個符合條件的f(n)(2)的表達(dá)式;
(2)一般地,當(dāng)該地區(qū)從事旅游服務(wù)工作的人數(shù)超過400人時,該地區(qū)也進(jìn)入了一年中的旅游“旺季”.那么,一年中的哪幾個月是該地區(qū)的旅游“旺季”?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案