(本小題滿分12分)
求函數(shù)y=在區(qū)間[2,6]上的最大值和最小值.
解:設(shè)x1、x2是區(qū)間[2,6]上的任意兩個實數(shù),且x1<x2,則
f(x1)-f(x2)= -
=[]
=
由2<x1<x2<6,得x2-x1>0,(x1-1)(x2-1)>0,
于是f(x1)-f(x2)>0,即f(x1)>f(x2).
所以函數(shù)y=是區(qū)間[2,6]上的減函數(shù)
因此,函數(shù)y=在區(qū)間的兩個端點上分別取得最大值與最小值,即當(dāng)x=2時,ymax=2;當(dāng)x=6時,ymin=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的定義域是R,則實數(shù)a的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
設(shè),,函數(shù)
(1)設(shè)不等式的解集為C,當(dāng)時,求實數(shù)取值范圍
(2)若對任意,都有成立,試求時,的值
(3)設(shè) ,求的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)在R上既是奇函數(shù),又是減函數(shù),則函數(shù)的圖像是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)統(tǒng)計,一名工人組裝第件某產(chǎn)品所用的時間(單位:分鐘)為
(A,為常數(shù)).已知工人組裝第4件產(chǎn)品用時30分鐘,組裝第A件產(chǎn)
品用時15分鐘,那么和A的值分別是( )
A.75,25B.75,16C.60,25D.60,16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知則(  )
A.  B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.若 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)曲線在點(1,1)處的切線與x軸的交點的橫坐標(biāo),令,則的值為                .    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域為____________。

查看答案和解析>>

同步練習(xí)冊答案