精英家教網 > 高中數學 > 題目詳情
對同一目標進行兩次射擊,第一、二次射擊命中目標的概率分別為0.5和0.7,則兩次射擊中至少有一次命中目標的概率是(  )
分析:先求得兩次射擊中都沒有命中目標的概率是 (1-0.5)(1-0.7),再用1減去此概率,即得所求.
解答:解:兩次射擊中都沒有命中目標的概率是 (1-0.5)(1-0.7)=0.15,
故兩次射擊中至少有一次命中目標的概率是1-0.15=0.85,
故選C.
點評:本題主要考查相互獨立事件的概率乘法公式,所求的事件與它的對立事件概率間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知甲乙二人射擊的命中率分別為
1
2
3
4
,現(xiàn)在兩人各備3發(fā)子彈對同一目標進行射擊,射擊規(guī)則如下:①通過投擲一枚均勻硬幣來決定誰先射擊;②如果射中,就接著射,如果射不中,就換另一人射;③目標被命中3槍或子彈用光就結束射擊(當一人用光,但目標中彈不到3次時,另一人可連續(xù)射擊,直到目標被命中3次或子彈用光為止).求:
(1)兩人都有機會射擊的概率;
(2)恰好用4槍結束射擊的概率.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知甲乙二人射擊的命中率分別為
1
2
3
4
,現(xiàn)在兩人各備3發(fā)子彈對同一目標進行射擊,射擊規(guī)則如下:①通過投擲一枚均勻硬幣來決定誰先射擊;②如果射中,就接著射,如果射不中,就換另一人射;③目標被命中3槍或子彈用光就結束射擊(當一人用光,但目標中彈不到3次時,另一人可連續(xù)射擊,直到目標被命中3次或子彈用光為止).求:
(1)兩人都有機會射擊的概率;
(2)恰好用4槍結束射擊的概率.

查看答案和解析>>

科目:高中數學 來源:2011年河北省唐山一中高考數學仿真試卷3(文科)(解析版) 題型:解答題

已知甲乙二人射擊的命中率分別為,現(xiàn)在兩人各備3發(fā)子彈對同一目標進行射擊,射擊規(guī)則如下:①通過投擲一枚均勻硬幣來決定誰先射擊;②如果射中,就接著射,如果射不中,就換另一人射;③目標被命中3槍或子彈用光就結束射擊(當一人用光,但目標中彈不到3次時,另一人可連續(xù)射擊,直到目標被命中3次或子彈用光為止).求:
(1)兩人都有機會射擊的概率;
(2)恰好用4槍結束射擊的概率.

查看答案和解析>>

同步練習冊答案