(Ⅰ)證法一:∵HM=MA,HN=NC,HK=KF,
∴MK∥AF,MN∥AC.∵M(jìn)K?平面ACF,AF?平面ACF,
∴MK∥平面ACF,
同理可證MN∥平面ACF,…(3分)
∵M(jìn)N,MK?平面MNK,且MK∩MN=M,
∴平面MNK∥平面ACF,…(4分)
又MG?平面MNK,故MG∥平面ACF.…(5分)
證法二:連HG并延長交FC于T,連接AT.
∵HN=NC,HK=KF,
∴KN∥FC,則HG=GT,
又∵HM=MA,∴MG∥AT,…(2分)∵M(jìn)G?平面ACF,AT?平面ACF,
∴MG∥平面ACF.…(5分)
(Ⅱ)解:(i)如圖,分別以DA,DC,DH所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系O-xyz.則有A(3,0,0),C(0,2,0),F(xiàn)(3,2,1),H(0,0,1).…(6分)
,
.
設(shè)平面ACF的一個法向量
,
則有
,解得
,
令y=3,則
,…(8分)
∴
,…(9分)
∴三棱錐H-ACF的高為
.…(10分)
(ii)t=2.…(13分)
分析:(Ⅰ)證法一:利用線面平行的判定證明MK∥平面ACF,MN∥平面ACF,從而可得平面MNK∥平面ACF,利用面面平行的性質(zhì)可得MG∥平面ACF;證法二:利用線面平行的判定證明MG∥平面ACF;
(Ⅱ)(i)建立空間直角坐標(biāo)系,求出平面ACF的一個法向量
,求出AH所在直線與平面ACF所成的角θ,再根據(jù)公式h=AH•sinθ求出三棱錐H-ACF的高
(ii)t=2.
點評:本小題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系和算法初步等基礎(chǔ)知識,考查空間想象能力、推理論證能力及運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想、函數(shù)與方程思想及應(yīng)用意識.