2.冪函數(shù)y=f(x)經(jīng)過點(diǎn)(4,2),則f(x)是( 。
A.偶函數(shù),且在(0,+∞).上是增函數(shù)
B.偶函數(shù),且在(0,+∞)上是減函數(shù)
C.奇函數(shù),且在(0,+∞)上是減函數(shù)
D.非奇非偶函數(shù),且在(0,+∞)上是增函數(shù)

分析 設(shè)出冪函數(shù)的解析式,利用已知條件求出冪函數(shù)的解析式,判斷即可.

解答 解:設(shè)冪函數(shù)為:y=xa,
∵冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(4,2),
∴2=4a,
∴a=$\frac{1}{2}$,
∴f(x)=$\sqrt{x}$,
則f(x)是非奇非偶函數(shù),且在(0,+∞)遞增,
故選:D.

點(diǎn)評(píng) 本題考查冪函數(shù)的解析式的應(yīng)用,基本知識(shí)的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C過點(diǎn)$A(1,\frac{3}{2})$,兩個(gè)焦點(diǎn)為F1(-1,0),F(xiàn)2(1,0).
(1)求橢圓C的方程;
(2)EF是過橢圓焦點(diǎn)F1的動(dòng)直線,B為橢圓短軸上的頂點(diǎn),當(dāng)B到直線EF的距離最大時(shí),求△EFB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知雙曲線M的標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1.求雙曲線M的實(shí)軸長、虛軸長、焦距、離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=2px(p>0)的準(zhǔn)線與曲線x2+y2-8x-9=0相切,則p的值為(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥BC;
(2)求三棱錐D-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知函數(shù)$f(x)={(\frac{1}{2})^{sinx}},x∈[0,\frac{5π}{6}]$,則f(x)的值域?yàn)閇$\frac{1}{2}$,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)a,b∈R,且a≠2,定義在區(qū)間(-b,b)內(nèi)的函數(shù)$f(x)={lg^{\frac{1+ax}{1+2x}}}$是奇函數(shù)
(1)求實(shí)數(shù)b的取值范圍;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.圖中所示的圓錐的俯視圖為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y-7≤0\\ x-3y+1≤0\\ 3x-y-5≥0\end{array}\right.$,則z=2x-y的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案