已知,在正項數(shù)列{an}中a1=2,前n項和為Sn,對所有n∈N且n>1有Sn=f(Sn-1)

(1)求數(shù)列{an}的通項公式;

(2)令,Tn=b1+b2+…bn,求Tn

答案:
解析:

  (1),又由,可得

  所以,對也成立

  (2),

  所以


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2013•河東區(qū)二模)已知正項數(shù)列{an}中,a1=6,點An(an,
an+1
)
在拋物線y2=x+1上;數(shù)列{bn}中,點Bn(n,bn)在過點(0,1),以方向向量為(1,2)的直線上.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;(文理共答)
(Ⅱ)若f(n)=
an,(n為奇數(shù))
bn,(n為偶數(shù))
,問是否存在k∈N,使f(k+27)=4f(k)成立,若存在,求出k值;若不存在,說明理由;(文理共答)
(Ⅲ)對任意正整數(shù)n,不等式
an+1
(1+
1
b1
)(1+
1
b2
)…(1+
1
bn
)
-
an
n-2+an
≤0成立,求正數(shù)a的取值范圍.(只理科答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的單調(diào)函數(shù)y=f(x),當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,有f(x+y)=f(x)f(y),
(1)求f(0),并寫出適合條件的函數(shù)f(x)的一個解析式;
(2)數(shù)列{an}滿足a1=f(0)且f(an+1)=
1
f(-2-an)
(n∈N+)
,
①求通項公式an的表達式;
②令bn=(
1
2
)an,Sn=b1+b2+…+bn,Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
,試比較Sn
4
3
Tn
的大小,并加以證明;
③當a>1時,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(log a+1x-log ax+1)
對于不小于2的正整數(shù)n恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•浦東新區(qū)二模)已知直角△ABC的三邊長a,b,c,滿足a≤b<c
(1)在a,b之間插入2011個數(shù),使這2013個數(shù)構成以a為首項的等差數(shù)列{an },且它們的和為2013,求c的最小值;
(2)已知a,b,c均為正整數(shù),且a,b,c成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列S1,S2,S3,…Sn,且Tn=-S1+S2-S3+…+(-1) nSn,求滿足不等式T2n>6•2n+1的所有n的值;
(3)已知a,b,c成等比數(shù)列,若數(shù)列{Xn}滿足
5
Xn=(
c
a
)n-(-
a
c
)n
(n∈N+),證明:數(shù)列{
Xn
}中的任意連續(xù)三項為邊長均可以構成直角三角形,且Xn是正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三次函數(shù)f(x)=
1
3
ax3+
1
2
bx2+cx
(a,b,c∈R,a≠0)的導數(shù)為f′(x)滿足條件:
(i)當x∈R時,f′(x-4)=f′(2-x),且f′(x)≥x;
(ii)當x∈(O,2)時,f′(x)≤(
x+1
2
)2

(iii)f′(x)在R上的最小值為0.數(shù)列{an}是正項數(shù)列,{an}的前n項的和是Sn,且滿足Sn=f′(an).
(1)求f′(x)的解析式;
(2)求證:數(shù)列{an}是等差數(shù)列;
(3)求證:
C
0
n
a1
+
C
1
n
a2
+
C
2
n
a3
+…+
C
n
n
an+1
2n-1
a1+an+1
a1an+1

查看答案和解析>>

科目:高中數(shù)學 來源:2004年高考教材全程總復習試卷·數(shù)學 題型:013

在正項數(shù)列{an}中,已知對于一切自然數(shù)n都有=an·an+4,若a3=2,a7=4,則a15等于

[  ]

A.8
B.16
C.32
D.64

查看答案和解析>>

同步練習冊答案