設(shè)實數(shù)x,y滿足不等式組
x+y-4≥0
2x+y-7≤0
x≥0,y≥0
,則z=x+2y的最大值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域,
由z=x+2y得y=-
1
2
x+
z
2
,平移直線,由圖象可知當(dāng)直線經(jīng)過點A(0,7)時,
直線y=-
1
2
x+
z
2
的截距最大,此時z最大,
此時z=2×7=14.
故答案為:14
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵,注意目標(biāo)函數(shù)的幾何意義.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
ax2-(2a+1)x+2lnx(a≥0).
(Ⅰ)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)求y=f(x)在區(qū)間(0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的各項都為正數(shù),且對任意n∈N*,a2n-1,a2n,a2n+1成等差數(shù)列,a2n,a2n+1,a2n+2成等比數(shù)列.
(1)若a2=1,a5=3,求a1的值;
(2)設(shè)a1<a2,求證:對任意n∈N*,且n≥2,都有
an+1
an
a2
a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=-
1
3
x3+
1
2
f′(1)x2-f′(2)x+5,則曲線y=f(x)在點(0,f(0))處的切線的斜率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

參數(shù)方程
x=cosθ(sinθ+cosθ)
y=sinθ(sinθ+cosθ)
(θ為參數(shù))所表示的曲線為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,頂點A在橢圓
x2
4
+
y2
3
=1的一個焦點上,邊BC是過原點的弦,則△ABC面積的最大值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(1+tanx)cos2x的定義域為(0,
π
2
),則函數(shù)f(x)的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[x]表示不超過x的最大整數(shù),如[π]=3,[-2.3]=-3.給出下列命題:
①對任意實數(shù)x,都有x-1<[x]≤x;
②對任意實數(shù)x,y,都有[x+y]≤[x]+[y];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)=[x•[x]],當(dāng)x∈[0,n)(n∈N*)時,令f(x)的值域為A,記集合A的元素個數(shù)為an,則
an+49
n
的最小值為
19
2

其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中有3張分別標(biāo)有1,2,3的卡片.從盒中隨機抽取一張記下號碼后放回,再隨機抽取一張記下號碼,則兩次抽取的卡片號碼中至少有一個為偶數(shù)的概率為
 

查看答案和解析>>

同步練習(xí)冊答案