【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用 (基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)是與上一年度車(chē)輛發(fā)生道路交通安全違法行為或者道路交通事故的情況相聯(lián)系的.交強(qiáng)險(xiǎn)第二年價(jià)格計(jì)算公式具體如下:交強(qiáng)險(xiǎn)最終保費(fèi)基準(zhǔn)保費(fèi)浮動(dòng)比率).發(fā)生交通事故的次數(shù)越多,出險(xiǎn)次數(shù)的就越多,費(fèi)率也就越髙,具體浮動(dòng)情況如下表:

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,為此搜集并整理了100輛這一品牌普通6座以下私家車(chē)一年內(nèi)的出險(xiǎn)次數(shù),得到下面的柱狀圖:

已知小明家里有一輛該品牌普通6座以下私家車(chē)且需要續(xù)保,續(xù)保費(fèi)用為.

1為事件,的估計(jì)值;

2的平均估計(jì)值.

【答案】(1)0.55.(2)1.14a.

【解析】試題分析:(1)由所給數(shù)據(jù)知,事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于或等于1且小于或等于4,由此可求的估計(jì)值;

(2)由期望的計(jì)算公式可得.

試題解析:((1)由所給數(shù)據(jù)知,事件發(fā)生當(dāng)且僅當(dāng)一年內(nèi)出險(xiǎn)次數(shù)大于或等于1且小于或等于4,

所以.

(2)由題可知

的平均估計(jì)值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一些棱長(zhǎng)是的小正方體堆放成一個(gè)幾何體,其正視圖和俯視圖如圖所示,則這個(gè)幾何體的體積最多是( ).

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠A,BC的對(duì)邊分別為, , ,若,

(1)求∠B的大;

(2), ,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)市政府“綠色出行”的號(hào)召,王老師每個(gè)工作日上下班由自駕車(chē)改為選擇乘坐地鐵或騎共享單車(chē)這兩種方式中的一種出行.根據(jù)王老師從2017年3月到2017年5月的出行情況統(tǒng)計(jì)可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車(chē)的概率是0.6.乘坐地鐵單程所需的費(fèi)用是3元,騎共享單車(chē)單程所需的費(fèi)用是1元.記王老師在一個(gè)工作日內(nèi)上下班所花費(fèi)的總交通費(fèi)用為X元,假設(shè)王老師上下班選擇出行方式是相互獨(dú)立的.
(I)求X的分布列和數(shù)學(xué)期望 ;
(II)已知王老師在2017年6月的所有工作日(按22個(gè)工作日計(jì))中共花費(fèi)交通費(fèi)用110元,請(qǐng)判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據(jù)以下原則說(shuō)明理由.
原則:設(shè) 表示王老師某月每個(gè)工作日出行的平均費(fèi)用,若 ,則有95%的把握認(rèn)為王老師該月的出行規(guī)律與前幾個(gè)月的出行規(guī)律相比有明顯變化.(注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)令Cn= 設(shè)數(shù)列{cn}的前n項(xiàng)和Tn , 求T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】口袋中裝有2個(gè)白球和nn≥2,n N*)個(gè)紅球.每次從袋中摸出2個(gè)球(每次摸球后把這2個(gè)球放回口袋中),若摸出的2個(gè)球顏色相同則為中獎(jiǎng),否則為不中獎(jiǎng).
(I)用含n的代數(shù)式表示1次摸球中獎(jiǎng)的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎(jiǎng)的概率;
(III)記3次摸球中恰有1次中獎(jiǎng)的概率為fp),當(dāng)fp)取得最大值時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條件 ;條件 :直線 與圓 相切,則 的( )
A.充分必要條件
B.必要不充分條件
C.充分不必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的最小值為3,且.

求函數(shù)的解析式;

(2)若偶函數(shù)(其中),那么, 在區(qū)間上是否存在零點(diǎn)?請(qǐng)說(shuō)明理由.

【答案】(1)(2)存在零點(diǎn)

【解析】試題分析:(1)待定系數(shù)法,己知函數(shù)類(lèi)型為二次函數(shù),又知f(-1)=f(3),所以對(duì)稱軸是x=1,且函數(shù)最小值f(1)=3,所設(shè)函數(shù),且,代入f(-1)=11,可解a。

2由題意可得,代入,由和根的存在性定理, 在區(qū)間(1,2)上存在零點(diǎn)。

試題解析:1)因?yàn)?/span>是二次函數(shù),且

所以二次函數(shù)圖像的對(duì)稱軸為

的最小值為3,所以可設(shè),且

,得

所以

2由(1)可得,

因?yàn)?/span>,

所以在區(qū)間(1,2)上存在零點(diǎn).

點(diǎn)睛

(1)對(duì)于求己知類(lèi)型函數(shù)的的解析式,常用待定系數(shù)法,由于二次函數(shù)的表達(dá)式形式比較多,有一般式,兩點(diǎn)式,頂點(diǎn)式,由本題所給條件知道對(duì)稱軸與頂點(diǎn)坐標(biāo),所以設(shè)頂點(diǎn)式。

(2)對(duì)于判定函數(shù)在否存在零點(diǎn)問(wèn)題,一般解決此類(lèi)問(wèn)題的三步曲是:①先通過(guò)觀察函數(shù)圖象再估算出根所在的區(qū)間;②根據(jù)方程根的存在性定理證明根是存在的;③最后根據(jù)函數(shù)的性質(zhì)證明根是唯一的.本題給了區(qū)間,可直接用根的存在性定理。

型】解答
結(jié)束】
20

【題目】《中華人民共和國(guó)個(gè)人所得稅》規(guī)定,公民月工資、薪金所得不超過(guò)3500元的部分不納稅,超過(guò)3500元的部分為全月稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

全月應(yīng)納稅所得額

稅率

不超過(guò)1500元的部分

超過(guò)1500元至4500元的部分

超過(guò)4500元至9000元的部分

(1)已知張先生的月工資,薪金所得為10000元,問(wèn)他當(dāng)月應(yīng)繳納多少個(gè)人所得稅?

(2)設(shè)王先生的月工資,薪金所得為,當(dāng)月應(yīng)繳納個(gè)人所得稅為元,寫(xiě)出的函數(shù)關(guān)系式;

(3)已知王先生一月份應(yīng)繳納個(gè)人所得稅為303元,那么他當(dāng)月的工資、薪金所得為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋內(nèi)裝有6個(gè)球,每個(gè)球上都記有從16的一個(gè)號(hào)碼,設(shè)號(hào)碼為n的球重克,這些球等可能地從袋里取出(不受重量、號(hào)碼的影響).

(1)如果任意取出1個(gè)球,求其重量大于號(hào)碼數(shù)的概率;

(2)如果不放回地任意取出2個(gè)球,求它們重量相等的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案