1.在ABC中,角A,B,C所對的邊分別為a,b,c.若$sin(A+B)=\frac{1}{3}$,a=3,c=4,則sinA=$\frac{1}{4}$.

分析 由已知利用三角形內(nèi)角和定理,誘導(dǎo)公式可求sinC,進(jìn)而利用正弦定理即可計算得解.

解答 解:∵$sin(A+B)=\frac{1}{3}$,a=3,c=4,
∴sinC=sin(A+B)=$\frac{1}{3}$,
∴sinA=$\frac{a•sinC}{c}$=$\frac{3×\frac{1}{3}}{4}$=$\frac{1}{4}$.
故答案為:$\frac{1}{4}$.

點評 本題主要考查了三角形內(nèi)角和定理,誘導(dǎo)公式,正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列語句中不是命題的為( 。
A.中國女排真棒!B.閃光的東西并非都是金子
C.經(jīng)過三點確定一個平面D.3-5=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.關(guān)于x的不等式${({\frac{1}{2}})^x}≤{({\frac{1}{2}})^{x+1}}+1$的解集是{x|x≥-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ax-lnx,F(xiàn)(x)=ex+ax,其中x>0.
(1)若a<0,f(x)和F(x)在區(qū)間(0,ln3)上具有相同的單調(diào)性,求實數(shù)a的取值范圍;
(2)設(shè)函數(shù)h(x)=x2-f(x)有兩個極值點x1、x2,且x1∈(0,$\frac{1}{2}$),求證:h(x1)-h(x2)>$\frac{3}{4}$-ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若定義運算a*b為:a*b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,如1*2=1,則函數(shù)f(x)=2x*2-x的值域為(  )
A.RB.(0,1]C.(0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用數(shù)學(xué)歸納法證明f(x)=1+$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{4}$+…+$\frac{1}{{2}^{n}-1}$>$\frac{n}{2}$(n∈N*)的過程中,假設(shè)當(dāng)n=k時成立,則當(dāng)n=k+1時,左邊f(xié)(k+1)=( 。
A.f(k)+$\frac{1}{{2}^{k+1}-1}$
B.f(k)+$\frac{1}{{2}^{k+1}}$
C.f(k)+$\frac{1}{{2}^{k}-1}$+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$
D.f(k)+$\frac{1}{{2}^{k}}$+$\frac{1}{{2}^{k}+1}$+…+$\frac{1}{{2}^{k+1}-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.雙曲線$\frac{x^2}{16}-\frac{y^2}{9}=1$的離心率為$\frac{5}{4}$,焦點到漸近線的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)數(shù)列{an}的前n項和為Sn,2Sn=nan+5n
(Ⅰ)證明數(shù)列{an}為等差數(shù)列;
(Ⅱ)已知S3=21,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知$f(x)={cos^2}x-{sin^2}x+2\sqrt{3}sinxcosx+1$
求(1)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,f(x)-3≥m恒成立,求實數(shù)m的范圍.

查看答案和解析>>

同步練習(xí)冊答案