若實數(shù)x,y滿足
x-y+1≥0
x+y≥0
x≤0
,則z=3x+2y的最大值是( 。
A、0
B、1
C、
3
D、9
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)m=x+3y,利用m的幾何意義,利用數(shù)形結(jié)合,先求出m的最大值,即可得到結(jié)論.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:
設(shè)m=x+2y,則z=3x+2y=3m,
由m=x+2y得y=-
1
2
x+
1
2
m,
平移直線y=-
1
2
x+
1
2
m,由圖象可知當直線y=-
1
2
x+
1
2
m經(jīng)過點B(0,1)時,
直線的截距最大,此時m最大.
此時mmax=0+2=2,
即zmax=32=9,
故選:D.
點評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.先求出指數(shù)冪m=x+3y的最值是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ln
1
|x|+1
的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≤2
2x+y≥4
y≥-2
,則目標函數(shù)z=-x-y的取值范圍是( 。
A、[-4,0]
B、[-8,-2]
C、[-4,-2]
D、[-4,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列語句:
①二次函數(shù)是偶函數(shù)嗎?
②2>2;
sin
π
2
=1
;
④x2-4x+4=0.
其中是命題的有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題正確的是( 。
①函數(shù)y=x+
1
4x
(x≠0)的值域是[1,+∞);
②平面內(nèi)的動點P到點F(-2,3)和到直線l:2x+y+1=0的距離相等,則P的軌跡是拋物線;
③直線AB與平面α相交于點B,且AB與α內(nèi)相交于點C的三條互不重合的直線CD、CE、CF所成的角相等,則AB⊥α;
④若f(x)=x2+bx+c(b,c∈R),則f(
x1+x2
2
)≤
1
2
[f(x1)+f(x2)].
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F(1,0),設(shè)左頂點為A,上頂點為B,且
OF
FB
=
AB
BF
,如圖.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若F(1,0),過F的直線l交橢圓于M,N兩點,試確定
FM
FN
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓方程
x2
a2
+
y2
b2
=1(a>b>0),離心率為
2
2
,過焦點且垂直于x軸的直線交橢圓于A,B兩點,AB=2.
(1)求該橢圓的標準方程;
(2)設(shè)動點P(x0,y0)滿足
OP
=
OM
+2
ON
,其中M,N是橢圓C上的點,直線OM與ON的斜率之積為-
1
2
,求證:x02+2y02為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
6
3
,右焦點F到直線
x
a
+
y
b
=0
的距離為1.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點M,N為橢圓的長軸的兩個端點,作不平行于坐標軸的割線AB,若滿足∠AFM=∠BFN,求證:割線AB恒經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點分別為A1,A2,左焦點為F,動直線x=m(|m|<a)與E相交于P,Q兩點,A1P與A2Q的交點M的軌跡落在雙曲線
x2
2
-y2=1
上.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過F點的直線l與E相交A、B兩點,與圓x2+y2=a2相交于C、D兩點,求
|AB|
|CD|
的范圍.

查看答案和解析>>

同步練習冊答案