【題目】已知函數(shù)f(x)=(x+1)e2x , g(x)=aln(x+1)+ x2+(3﹣a)x+a(a∈R).
(1)當a=9,求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求a的取值范圍.

【答案】
(1)解:a=9時,g(x)=9ln(x+1)+ x2﹣6x+9,

g′(x)= ,(x>﹣1),

由g′(x)>0,解得:﹣1<x<1或x>2,

由g′(x)<0,解得:1<x<2,

∴g(x)在(﹣1,1)遞增,在(1,2)遞減,在(2,+∞)遞增


(2)解:由f(x)≥g(x),得:(x+1)e2x≥aln(x+1)+ x2+(3﹣a)x+a,

令h(x)=(x+1)e2x﹣aln(x+1)﹣ x2﹣(3﹣a)x﹣a,

①a≥0時,h′(x)=(2x+3)e2x x+(a﹣3),

1°,x=0時,h′(x)=0,

2°,x∈(﹣1,0)時,h′(x)<(2x+3)e2x ﹣2x+(a﹣3)=(2x+3)(e2x﹣1)+a(1﹣ )<0,

3°,x∈(0,+∞)時,h′(x)>(2x+3)e2x ﹣2x+(a﹣3)=(2x+3)(e2x﹣1)+a(1﹣ )>0,

∴h(x)在(﹣1,0)遞減,在(0,+∞)遞增,

∴h(x)的最小值是h(0)=1﹣a,

,解得:0≤a≤1;

②a<0時,x∈(﹣1,0)時,f(x)∈(0,1),即f(x)<1,

而對于函數(shù)g(x),不妨令x=﹣1+ ,

有g(x)=aln(x+1)+ x2+(3﹣a)x+a>aln(x+1)+2a﹣3=aln(﹣1+ +1)+2a﹣3=1,

故在(﹣1,0)內(nèi)存在﹣1+ ,使得g(x)>f(x),f(x)≥g(x)b不恒成立,

綜上,a的范圍是[0,1]


【解析】(1)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;(2)令h(x)=(x+1)e2x﹣aln(x+1)﹣ x2﹣(3﹣a)x﹣a,通過討論a的范圍,求出函數(shù)的導數(shù),結合函數(shù)的單調(diào)性求出a的具體范圍即可.
【考點精析】認真審題,首先需要了解利用導數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導數(shù)的正負有如下關系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減),還要掌握函數(shù)的最大(小)值與導數(shù)(求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75分)的學生定義為甲組,成績在75分以下(不包括75分)定義為乙組.
(Ⅰ)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;
(Ⅱ)記甲組學生的成績分別為x1 , x2 , …,x12 , 執(zhí)行如圖所示的程序框圖,求輸出的S的值;
(Ⅲ)競賽中,學生小張、小李同時回答兩道題,小張答對每道題的概率均為 ,小李答對每道題的概率均為 ,兩人回答每道題正確與否相互獨立.記小張答對題的道數(shù)為a,小李答對題的道數(shù)為b,X=|a﹣b|,寫出X的概率分布列,并求出X的數(shù)學期望.

附:K2= ;其中n=a+b+c+d
獨立性檢驗臨界表:

P(K2>k0

0.100

0.050

0.010

k0

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結論;

(3)求實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極小值10,則的值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),是定義域為的奇函數(shù).

(1)確定的值;

(2)若,函數(shù),,求的最小值;

(3)若,是否存在正整數(shù),使得恒成立?若存在,請求出所有的正整數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)已知函數(shù)是偶函數(shù).

1)求實數(shù)的值;

2)設, 有且只有一個實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某機構在某一學校隨機抽取30名學生參加環(huán)保知識測試,測試成績(單位:分)如圖所示,假設得分值的中位數(shù)為me , 眾數(shù)為m0 , 平均值為 ,則(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設數(shù)列{an}的前n項和是Sn , 若點An(n, )在函數(shù)f(x)=﹣x+c的圖象上運動,其中c是與x無關的常數(shù),且a1=3(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)記bn=a ,求數(shù)列{bn}的前n項和Tn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=|x﹣2|﹣|2x+l|.
(I)求不等式f(x)≤x的解集;
(II )若不等式f(x)≥t2﹣t在x∈[﹣2,﹣1]時恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案