已知命題p:1-a•2x≥0在x∈(-∞,0]恒成立,命題q:?x∈R,ax2-x+a>0.若命題p或q為真,命題p且q為假,求實(shí)數(shù)a的范圍.
命題p:1-a•2x≥0在x∈(-∞,0]上恒成立.
即:a≤(
1
2
)x
在x∈(-∞,0]上恒成立.
∵(
1
2
x≥1,x∈(-∞,0]
∴a≤1,
即命題p:a≤1.
命題q:?x∈R,ax2-x+a>0.
顯然當(dāng)a≤0時(shí),不合題意,
則:
a>0
(-1)2-4a2<0

a>
1
2

∴命題q:a>
1
2
,
∵p或q為真,p且q為假
∴p和q一真一假,
a≤1
a≤
1
2
a>1
a>
1
2
,
a≤
1
2
或a>1
,
∴a的取值范圍為:a≤
1
2
或a>1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x
(1)求函數(shù)f(x)的解析式,并畫(huà)出函數(shù)f(x)的圖象.
(2)根據(jù)圖象寫(xiě)出的單調(diào)區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2+(lga-2)x+lgb滿足f(1)=0,
(1)求a+b的最小值及此時(shí)a與b的值;
(2)對(duì)于任意x∈R,恒有f(x)≥2x-6成立.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)是定義在[-1,1]上的奇函數(shù),且f(1)=1.若對(duì)任意a,b∈[-1,1],a+b≠0都有
f(a)+f(b)
a+b
>0

(1)判斷函數(shù)f(x)的單調(diào)性,并說(shuō)明理由;
(2)解不等式f(x-
1
2
)+f(x-
1
4
)<0
;
(3)若不等式f(x)+(2a-1)t-2≤0對(duì)所有x∈[-1,1]和a∈[-1,1]都恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)y=f(x+1)為偶函數(shù),且f(x)在(1,+∞)上遞減,設(shè)a=f(log210),b=f(log310),c=f(0.10.2),則a,b,c的大小關(guān)系正確的是( 。
A.a(chǎn)>b>cB.b>a>cC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義在R上的函數(shù)f(x)=2x+
a
2x
,
(1)若f(x)為偶函數(shù),求a的值;
(2)若f(x)在[0,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(B題)奇函數(shù)y=f(x)在定義域[-1,1]上是增函數(shù),則滿足f(m-1)+f(2m-1)<0的m的取值范圍為(  )
A.[0,1]B.[0,
2
3
C.[0,
2
3
]
D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列函數(shù)是奇函數(shù)的有(填序號(hào))______.
①f(x)=x|x|,
②f(x)=x+
1
x
,
③f(x)=2x+1,
④f(x0=-x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

是偶函數(shù),且當(dāng)的解集是(  )
A.(-1,0)B.(-∞,0)∪(1,2)
C.(1,2)D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案