10.在平面直角坐標系xOy中,雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線與橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)交于第一、二象限內(nèi)的兩點分別為A、B,若△OAB的外接圓的圓心為(0,$\sqrt{2}$a),則雙曲線C1的離心率為$\sqrt{6}-\sqrt{2}$.

分析 由雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,可得漸近線為y=$±\frac{a}$x,與橢圓方程聯(lián)立解得A,利用兩點之間的距離公式可得:$\sqrt{(\frac{a}{\sqrt{2}})^{2}+(\frac{\sqrt{2}}-\sqrt{2}a)^{2}}$=$\sqrt{2}$a,解得$\frac{a}$.利用雙曲線C1的離心率=$\sqrt{1+(\frac{a})^{2}}$即可得出.

解答 解:由雙曲線C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,可得漸近線為y=$±\frac{a}$x,
聯(lián)立$\left\{\begin{array}{l}{y=\frac{a}x}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1}\end{array}\right.$,解得A$(\frac{a}{\sqrt{2}},\frac{\sqrt{2}})$,
則$\sqrt{(\frac{a}{\sqrt{2}})^{2}+(\frac{\sqrt{2}}-\sqrt{2}a)^{2}}$=$\sqrt{2}$a,
化為:b2-4ab+a2=0,
解得$\frac{a}$=2-$\sqrt{3}$.
∴雙曲線C1的離心率=$\sqrt{1+(\frac{a})^{2}}$=$\sqrt{6}-\sqrt{2}$.
故答案為:$\sqrt{6}-\sqrt{2}$.

點評 本題考查了橢圓與雙曲線的標準方程及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,若輸入S的值為$\frac{1}{2}$,則輸出S的值為(  )
A.-1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.假設(shè)某地區(qū)人口每年增加1%,求25年后的該地區(qū)人口是現(xiàn)在人口的多少倍.(精確到0.01)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點,A是其上頂點,且△AF1F2是等腰直角三角形,延長AF2與橢圓C交于另一點B,若△AF1B的面積為6,則橢圓C的方程為$\frac{{x}^{2}}{9}+\frac{2{y}^{2}}{9}$=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個頂點為(0,1),且離心率為$\frac{\sqrt{3}}{2}$.
(1)求橢圓C的方程;
(2)從x2+y2=16上一點P向橢圓C引兩條切線,切點分別為A,B,當直線AB與x軸、y軸分別交于M、N兩點時,求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x2-3x+m+1nx(m∈R)
(1)求f(x)的單調(diào)增區(qū)間與減區(qū)間;
(2)填表(不要求過程,只填結(jié)果即可)
m的范圍   
方程f(x)=0的解得個數(shù)123

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.求和:(x+$\frac{1}{y}$)+(x2$\frac{1}{y^2}$)+…+(xn+$\frac{1}{{y}^{n}}$)(xy≠0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,17,17,16,14,12,10,設(shè)平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有(  )
A.a>b>cB.b>c>aC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知sin2α=$\frac{5}{13}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sin4α,cos4α,tan4α的值.

查看答案和解析>>

同步練習冊答案