16.設x=50.6,y=0.65,z=log0.65,則x,y,z的大小關系為( 。
A.y<z<xB.y<x<zC.z<x<yD.z<y<x

分析 利用指數(shù)函數(shù)與對數(shù)函數(shù)的單調性即可得出.

解答 解:∵x=50.6>1,0<y=0.65<1,z=log0.65<0,
則x,y,z的大小關系為x>y>z,
故選:D.

點評 本題考查了指數(shù)函數(shù)與對數(shù)函數(shù)的單調性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.設函數(shù)$f(x)=\left\{\begin{array}{l}1-\sqrt{x},x≥0\\{3^x},x<0\end{array}\right.$,則f(f(-2))=( 。
A.-1B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知點P(2,2),圓C:x2+y2-8y=0,過點P的動直線l與圓C交于A,B兩點,線段AB的中點為M,O為坐標原點.求M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\overrightarrow a=(1,2)$,$2\overrightarrow a-\overrightarrow b=(4,1)$,則$\overrightarrow a•\overrightarrow b$=( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.設變量x,y滿足約束條件$\left\{\begin{array}{l}y≥1\\ x-y-2≤0\\ x+y-2≥0\end{array}\right.$,則目標函數(shù)z=x+2y+3的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若偶函數(shù)f(x)在(-∞,0)上是減函數(shù),則滿足f(1)≤f(a)的實數(shù)a的取值范圍是( 。
A.[1,+∞)B.(-∞,-1]C.(-∞,-1]∪[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=mx+$\frac{1}{x}$且f(1)=2.
(1)判斷函數(shù)f(x)的奇偶性
(2)判斷函數(shù)f(x)在(1,+∞)上的增減性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在△ABC中,∠A=45°,a=$\sqrt{5}$,b=4,滿足條件的△ABC( 。
A.不存在B.有一個C.有兩個D.有無數(shù)多個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.圓(x-$\frac{3}{2}$)2+(y-1)2=$\frac{1}{4}$的圓心是$(\frac{3}{2},1)$,半徑是$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案