若實數(shù)x,y滿足
y≥0
x-2y≥0
x-y-2≥0
,則實數(shù)m=
y-1
x+1
的取值范圍是( 。
A、(-1,1)
B、[-1,1)
C、(-
1
3
,
1
2
D、[-
1
3
1
2
考點:簡單線性規(guī)劃
專題:數(shù)形結(jié)合,不等式的解法及應(yīng)用
分析:作出可行域,m=
y-1
x+1
表示區(qū)域內(nèi)的點與C(-1,1)連線的斜率,即可得出結(jié)論.
解答: 解:作圖,A(2,0),B(4,2),
m=
y-1
x+1
表示區(qū)域內(nèi)的點與C(-1,1)連線的斜率,
∵AC的斜率為
0-1
2+1
=-
1
3
,OB的斜率為
1
2
,
∴可得實數(shù)m=
y-1
x+1
的取值范圍是[-
1
3
,
1
2
).
故選:D.
點評:本題考查線性規(guī)劃知識,考查數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a1•sin(x+α1)+a2•sin(x+α2)+…+αn•sin(x+αn),其中αi(i=1,2,…,n,n∈N*,n≥2)為已知實常數(shù),x∈R,則下列命題中錯誤的是( 。
A、若f(0)=f(
π
2
)=0,則f(x)=0對任意實數(shù)x恒成立
B、若f(0)=0,則函數(shù)f(x)為奇函數(shù)
C、若f(
π
2
)=0,則函數(shù)f(x)為偶函數(shù)
D、當(dāng)f2(0)+f2
π
2
)≠0時,若f(x1)=f(x2)=0,則x1-x2=2kπ(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點為F,過F作斜率為
b
a
的直線與橢圓交于A,B兩點,若|FB|≥2|FA|,則橢圓的離心率e的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1、F2是雙曲線
x2
4
-
y2
5
=1的兩個焦點,點P是該雙曲線上一點,滿足|PF1|+|PF2|=9,則|PF1|•|PF2|=(  )
A、4
B、5
C、
65
4
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下述命題
①若f(a)•f(b)<0,則函數(shù)f(x)在(a,b)內(nèi)必有零點;
②當(dāng)a>1時,總存在x0∈R,當(dāng)x>x0時,總有ax>xn>logax;
③函數(shù)y=1(x∈R)是冪函數(shù);
④若A?B,則Card(A)<Card(B)其中真命題的個數(shù)是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos
π
9
•cos
9
•cos(-
23π
9
)=( 。
A、-
1
8
B、-
1
16
C、
1
16
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點F是拋物線C:y2=x的焦點,S是拋物線C在第一象限內(nèi)的點,且|SF|=
5
4

(1)求點S的坐標(biāo);
(2)以S為圓心的動圓與x軸分別交于兩點A,B,直線SA,SB分別交拋物線C于M,N兩點,求直線MN的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直線l:y=2x-4交拋物線y2=4x于A、B兩點,試在拋物線AOB這段曲線上求一點P,使△ABP的面積最大,并求這個最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)的與雙曲線C2:3x2-y2=1有公共漸近線,且過點A(1,0).
(1)求雙曲線C1的標(biāo)準(zhǔn)方程;
(2)設(shè)F1、F2分別是雙曲線C1左、右焦點.若P是該雙曲線左支上的一點,且∠F1PF2=60°,求△F1PF2的面積S.

查看答案和解析>>

同步練習(xí)冊答案