正四棱錐的側(cè)棱長為
,側(cè)棱與底面所成的角為
,則該棱錐的體積為( )
高
,又因底面正方形的對角線等于
,∴底面積為
,∴體積
。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在直三棱柱
中,平面
側(cè)面。
(Ⅰ)求證:
;
(Ⅱ)若直線
AC與平面
A1BC所成的角為
θ,二面角
A1-
BC-
A的大小為
φ,試判斷
θ與
φ的大小關系,并予以證明。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在五棱錐
中,
底面
,
,
,
。
(1)證明:
平面
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在如圖所示的多面體中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF∥AC,AB=
,EF=EC=1,
⑴求證:平面BEF⊥平面DEF;
⑵求二面角A-BF-E的大小。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在幾何體
中,面
為矩形,
面
,
(1)求證;當
時,平面PBD⊥平面PAC;
(2)當
時,求二面角
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在長方體
中,點
在棱
的延長線上,
且
.
(Ⅰ) 求證:
//平面
;
(Ⅱ) 求證:平面
平面
;
(Ⅲ)求四面體
的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知三棱錐P—ABC中,PC⊥底面ABC,AB=BC,
D、F分別為AC、PC的中點,DE⊥AP于E.
(1)求證:AP⊥平面BDE;
(2)求證:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱錐
P—ABC所成兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,ABCD-A
1B
1C
1D
1為正方體,則以下結論:
①BD∥平面CB
1D
1;
②AC
1⊥BD;
③AC
1⊥平面CB
1D
1 其中正確結論的個數(shù)是 ( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知直線
,有下面四個命題:
(1)
; (2)
;
(3)
; (4)
.
其中正確的命題是( )
A.(1)與(2) | B.(1)與(3) | C.(2)與(4) | D.(3)與(4) |
查看答案和解析>>