已知函數(shù)f(x)=(-ax2-2x+a)•ex,(a∈R).
(1)當(dāng)a=-2時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若f(x)在[-1,1]上單調(diào)遞減,求實數(shù)a的取值范圍.
解:(1)a=-2時,f(x)=(2x
2-2x-2)•e
x,定義域為R.
f′(x)=)=(2x
2-2x-2)•e
x+(4x-2)•e
x=2(x-1)(x+2)•e
x.
由f′(x)>0得x<-2或x>1,由f′(x)<0,得-2<x<1,
∴f(x)的單調(diào)遞增區(qū)間為(-∞,-2),(1,+∞),單調(diào)遞減區(qū)間為(-2,-1).
(2)f′(x)=(-ax
2-2x+a)•e
x+(-2ax-2)•e
x=-[ax
2+2(a+1)x+2-a]•e
x.
令g(x)=-ax
2-2(a+1)x+a-2.
①當(dāng)a=0時,g(x)=-2x-2,在(-1,1)內(nèi)g(x)<0,f′(x)<0,
函數(shù)f(x)在[-1,1]上單調(diào)遞減.
②當(dāng)a>0時,g(x)=-ax
2-2(a+1)x+a-2是二次函數(shù),其對稱軸為x=-1-
<-1,
當(dāng)且僅當(dāng)g(-1)≤0,即a≤0時,f′(x)≤0,此時無解.
③當(dāng)a<0時,g(x)=-ax
2-2(a+1)x+a-2是二次函數(shù),
當(dāng)且僅當(dāng)
即
.∴-2≤a<0時,f′(x)≤0,
此時函數(shù)f(x)在[-1,1]上單調(diào)遞減.
綜上,實數(shù)a的取值范圍是[-2,0].
分析:(1)把a=-2代入f(x),解不等式f′(x)>0,f′(x)<0即可;
(2)f(x)在[-1,1]上單調(diào)遞減,即f′(x)≤0在[-1,1]上恒成立,對a進(jìn)行分類討論即可解出a的取值范圍.
點評:本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系,對可導(dǎo)函數(shù)f(x)來說,f′(x)≤0(不總為0)是f(x)在某區(qū)間上單調(diào)遞減的充要條件.