(理科做)已知函數(shù)f(x)=f'(0)cosx+sinx,則函數(shù)f(x)在x0=
π
2
處的切線方程是( 。
分析:先求出函數(shù)f(x)的導(dǎo)數(shù),然后令x=0求出f'(0),從而求出f'(
π
2
)得到切線的斜率,最后利用點斜式直線方程求出切線,化成一般式即可.
解答:解:f′(x)=-f′(0)sinx+cosx,
令x=0,得f′(0)=1,k=f(
π
2
)=-1

所以切線方程為y-1=-(x-
π
2
)
,即x+y-
π
2
-1=0

故選B.
點評:本題主要考查了利用導(dǎo)數(shù)研究曲線上某點切線方程,解題的關(guān)鍵是理解f′(0)是常數(shù),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)已知函數(shù)f(x)=lnx-a2x2+ax(a≥0).
(1)當(dāng)a=1時,證明函數(shù)f(x)只有一個零點;
(2)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(0,b)成中心對稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)已知函數(shù)f(x)=x2-ax+3在(0,1)上為減函數(shù),函數(shù)g(x)=x2-alnx在區(qū)間(1,2)上為增函數(shù).
(1)求實數(shù)a的值;
(2)當(dāng)-1<m<0時,判斷方程f(x)=2g(x)+m的解的個數(shù),并說明理由;
(3)設(shè)函數(shù)y=f(bx)(其中0<b<1)的圖象C1與函數(shù)y=g(x)的圖象C2交于P、Q,過線段PQ的中點作x軸的垂線分別交C1、C2于點M、N.證明:曲線C1在點M處的切線與曲線C2在點N處的切線不平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(理科做)已知函數(shù)f(x)=x3+ax+b定義在區(qū)間[-1,1]上,且f(0)=f(1).又P(x1•y1)、Q(x2•y2)是其圖象上任意兩點(x1≠x2).
(1)求證:f(x)的圖象關(guān)于點(0,b)成中心對稱圖形;
(2)設(shè)直線PQ的斜率為k,求證:|k|<2;
(3)若0≤x1<x2≤1,求證:|y1-y2|<1.

查看答案和解析>>

同步練習(xí)冊答案