11.已知集合A={x|2x2+x-3=0},集合B={i|i2≥4}},∁RC={-1,1,$\frac{3}{2}$},則A∩BU∁RC=( 。
A.{1,-1,$\frac{3}{2}$}B.{-2,1,-$\frac{3}{2}$,-1}C.{1}D.{2,1,-1,$\frac{3}{2}$}

分析 化簡集合A,和集合B,根據(jù)集合的基本運(yùn)算即可求A∩BU∁RC

解答 解:集合A={x|2x2+x-3=0}={-$\frac{3}{2}$,1}
集合B={i|i2≥4}={i|i≥2或i≤-2}
那么A∩B=∅.
RC={-1,1,$\frac{3}{2}$},
則A∩B∪∁RC=∁RC={-1,1,$\frac{3}{2}$},
故選A.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\sqrt{3}t\end{array}\right.$(t為參數(shù))以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的方程為$sinθ-\sqrt{3}ρ{cos^2}θ=0$.
(Ⅰ)求曲線C的直角坐標(biāo)方程;
(Ⅱ)寫出直線l與曲線C交點(diǎn)的一個(gè)極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知拋物線C:y2=8x的焦點(diǎn)為F,P為C的準(zhǔn)線上一點(diǎn),Q(在第一象限)是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則QF的長為(  )
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系xoy中,雙曲線${C_1}:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的漸近線與拋物線${C_2}:{y^2}=2px({p>0})$交于點(diǎn)O,A,B,若△OAB的垂心為C2的焦點(diǎn),則C1的離心率為( 。
A.$\frac{3}{2}$B.$\sqrt{5}$C.$\frac{{3\sqrt{5}}}{5}$D.$\frac{{\sqrt{5}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表:
組別PM2.5濃度
(微克/立方米)
頻數(shù)(天)頻率
 第一組(0,25]30.15
第二組(25,50]120.6
第三組(50,75]30.15
第四組(75,100]20.1
(1)將這20天的測量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖.
①求圖4中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(2)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū)PM2.5的24小時(shí)平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.將A,B,C,D這4名同學(xué)從左至右隨機(jī)地排成一排,則“A與B相鄰且A與C之間恰好有1名同學(xué)”的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)函數(shù)f(x)=g($\frac{x}{2}$)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為9x+y-1=0,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為x+2y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的圖象如圖所示,則f($\frac{π}{4}$)的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<0}\\{|\frac{1}{2}{x}^{2}-2x+1|,x≥0}\end{array}\right.$,方程f2(x)-af(x)+b=0(b≠0)有六個(gè)不同的實(shí)數(shù)解,則3a+b的取值范圍是(  )
A.[6,11]B.[3,11]C.(6,11)D.(3,11)

查看答案和解析>>

同步練習(xí)冊答案