將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復數(shù)

(1)求事件“為實數(shù)”的概率;

(2)求事件“”的概率。

(Ⅰ)(Ⅱ)


解析:

(1)為實數(shù),即為實數(shù),

 ∴b=3  ………………………2分

又依題意,b可取1,2,3,4,5,6,故出現(xiàn)b=3的概率為

即事件“為實數(shù)”的概率為           ……………………………………6分

(2)由已知,  可知,b的值只能取1、2、3  

當b=1時, ,即a可取1,2,3,4

當b=2時, ,即a可取1,2,3,4

當b=3時, ,即a可取2  ………………………9分              

由上可知,共有9種情況下可使事件“”成立,又a,b的取值情況共有36種故事件“”的概率為                 ………………………………12分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復數(shù)z=a+bi.
(1)求事件“z-3i為實數(shù)”的概率;
(2)求事件“|z-2|≤3”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復數(shù)z=a+bi.
(1)求事件“z-3i為實數(shù)”的概率;
(2)求事件“復數(shù)z在復平面內(nèi)的對應點(a,b)滿足(a-2)2+b2≤9”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.設(shè)復數(shù)z=a+bi.
(Ⅰ)求事件“z-4i為實數(shù)”的概率;
(Ⅱ)求事件“|z-1|≤3”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為x,第二次出現(xiàn)的點數(shù)為y.則事件“x+y≤3”的概率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)有關(guān)于x的一元二次方程x2+2ax+b2=0.
(1)將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為a,第二次出現(xiàn)的點數(shù)為b.求上述方程有實根的概率;
(2)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

同步練習冊答案