精英家教網 > 高中數學 > 題目詳情
若關于x的函數y=x+
m2
x
在(0,+∞)的值恒大于4,則( 。
分析:利用基本不等式即可得出.
解答:解:∵x>0,∴函數y=x+
m2
x
2
x•
m2
x
=2|m|>4恒成立,化為|m|>2,解得m>2或m<-2.
故選B.
點評:本題考查了基本不等式的性質和含絕對值不等式的解法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若關于x的函數y=mx2m-n的導數為y′=4x,則m+n的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某商場經營一批進價為12元/個的小商品.在4天的試銷中,對此商品的單價x(元)與相應的日銷量y(個)作了統(tǒng)計,其數據如表
x 16 20 24 28
y 42 30 18 6
(1)能否找到一種函數,使它反映y關于x的函數關系?若能,寫出函數解析式;(提示:可根據表格中的數據描點后觀察,再從一次函數,二次函數,指數函數,對數函數等中選擇)
(2)設經營此商品的日銷售利潤為P(元),求P關于x的函數解析式,并指出當此商品的銷售價每個為多少元時,才能使日銷售利潤P取最大值?最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的函數y=mx2m-n的導數為y′=4x,則m+n的值為( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

若關于x的函數y=x+在(0,+∞)的值恒大于4,則(           )

A.m>2                 B.m<-2或m>2          C.-2<m<2           D.m<-2

查看答案和解析>>

同步練習冊答案